SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canfield Donald E.) "

Sökning: WFRF:(Canfield Donald E.)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gaines, Robert R., et al. (författare)
  • Mechanism for Burgess Shale-type preservation
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:14, s. 5180-5184
  • Tidskriftsartikel (refereegranskat)abstract
    • Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott’s initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the “Cambrian explosion.”
  •  
2.
  • Canfield, Donald E., et al. (författare)
  • A Mesoproterozoic iron formation
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:17, s. 3895-3904
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.
  •  
3.
  • Canfield, Donald E., et al. (författare)
  • Oxygen dynamics in the aftermath of the Great Oxidation of the Earth’s atmosphere.
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:42, s. 16736-16741
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxygen content of Earth’s atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth’s oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth’s oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest–lived positive ?13C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.
  •  
4.
  • Dahl, Tais W., et al. (författare)
  • Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:42, s. 17911-17915
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of Earth's biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coincides with the emergence of the Ediacaran fauna, including large, motile bilaterian animals, ca. 550-560 million year ago (Ma), reinforcing previous geochemical indications that Earth surface oxygenation facilitated this radiation. The second, perhaps larger, oxygenation took place around 400 Ma, well after the initial rise of animals and, therefore, suggesting that early metazoans evolved in a relatively low oxygen environment. This later oxygenation correlates with the diversification of vascular plants, which likely contributed to increased oxygenation through the enhanced burial of organic carbon in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution.
  •  
5.
  • Dahl, Tais W., et al. (författare)
  • Reply to Butterfield : The Devonian radiation of large predatory fish coincided with elevated athospheric oxygen levels
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:9, s. E29-
  • Tidskriftsartikel (refereegranskat)abstract
    • We welcome this opportunity to clarify the conclusions and implications of our recent publication in PNAS. Butterfield (1) raises four issues regarding the oxygenation of the Paleozoic Earth's surface and its correlation to animal evolution. Our geochemical and paleontological data supported ocean oxygenation in the Silurian-Early Devonian (2), a critical transition in Earth history that influenced biogeochemical cycles and biological systems. First, Butterfield suggests that evidence of charcoal in late Silurian rocks is incompatible with our claim that the earlier Paleozoic atmosphere had oxygen levels below 50% PAL (present-day atmospheric level). This counterargument rests on the assumption that the “fire window” of 62–166% PAL oxygen is well defined, but this is not the case (3).
  •  
6.
  • Dahl, Tais W., et al. (författare)
  • Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies
  • 2021
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 220
  • Forskningsöversikt (refereegranskat)abstract
    • The Late Ordovician Mass Extinction wiped out 85% of animal species in two phases (LOME1 and LOME2). The kill mechanisms for the extinction phases are debated, but deteriorating climate and the expansion of marine anoxia appear to have been important factors. Nevertheless, the spatial extent and intensity of marine anoxia and its temporal relationship with the extinctions are not well understood. Here, we review existing global paleoredox proxy data based on molybdenum (Mo) and uranium (U) isotopes from four paleocontinents combined with new Mo isotope data from Dob's Linn, Scotland. Individually, these sedimentary records demonstrate significant redox fluctuations, but our coupled dynamic oceanic mass balance model for the evolution of the marine Mo and U cycles reveals that globally expansive ocean anoxia is best constrained by δ238U in carbonates from Anticosti Island that record expansive anoxia during LOME2. In addition, we consider periodic sulfidic anoxia developing in well-ventilated parts of the shallow oceans (e.g. during warmer periods with greater solar insolation) to have produced temporarily high seawater δ98Mo values during LOME1 in accordance with trends to high values observed in the sedimentary records. In this view, oceanic oxygen loss had a causal role during both extinction phases in the Late Ordovician.
  •  
7.
  • El Albani, Abderrazak, et al. (författare)
  • Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7302, s. 100-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The evidence for macroscopic life during the Palaeoproterozoic era (2.5-1.6 Gyr ago) is controversial(1-5). Except for the nearly 2-Gyr-old coil-shaped fossil Grypania spiralis(6,7), which may have been eukaryotic, evidence for morphological and taxonomic bio-diversification of macroorganisms only occurs towards the beginning of the Mesoproterozoic era (1.6-1.0 Gyr)(8). Here we report the discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are up to 12 cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly associated with multicellular organization(9). The Gabon fossils, occurring after the 2.45-2.32-Gyr increase in atmospheric oxygen concentration(10), may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5 Gyr later, in the Cambrian explosion.
  •  
8.
  • El Albani, Abder, et al. (författare)
  • Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 116:9, s. 3431-3436
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2.1 billion-year-old sedimentary strata contain exquisitely preserved fossils that provide an ecologic snapshot of the biota inhabiting an oxygenated shallow-marine environment. Most striking are the pyritized string-shaped structures, which suggest that the producer have been a multicellular or syncytial organism able to migrate laterally and vertically to reach for food resources. A modern analogue is the aggregation of amoeboid cells into a migratory slug phase in modern cellular slime molds during time of food starvation. While it remains uncertain whether the amoeboidlike organisms represent a failed experiment or a prelude to subsequent evolutionary innovations, they add to the growing record of comparatively complex life forms that existed more than a billion years before animals emerged in the late Neoproterozoic.Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) Science 257:232–235; Knoll et al. (2006) Philos Trans R Soc Lond B 361:1023–1038], Stirling biota [Bengtson S et al. (2007) Paleobiology 33:351–381], and large colonial organisms exhibiting signs of coordinated growth from the 2.1-Ga Francevillian series, Gabon. Here we report on pyritized string-shaped structures from the Francevillian Basin. Combined microscopic, microtomographic, geochemical, and sedimentologic analyses provide evidence for biogenicity, and syngenicity and suggest that the structures underwent fossilization during early diagenesis close to the sediment–water interface. The string-shaped structures are up to 6 mm across and extend up to 170 mm through the strata. Morphological and 3D tomographic reconstructions suggest that the producer may have been a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources. A possible modern analog is the aggregation of amoeboid cells into a migratory slug phase in cellular slime molds at times of starvation. This unique ecologic window established in an oxygenated, shallow-marine environment represents an exceptional record of the biosphere following the crucial changes that occurred in the atmosphere and ocean in the aftermath of the great oxidation event (GOE).
  •  
9.
  • El Albani, Abderrazak, et al. (författare)
  • The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6:e99438, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth’s surface environments following the first appreciable rise of free atmospheric oxygen concentrations ~2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rodshaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
  •  
10.
  • Gaines, Robert R., et al. (författare)
  • Burgess Shale-type biotas were not entirely burrowed away
  • 2012
  • Ingår i: Geology. - 0091-7613 .- 1943-2682. ; 40:3, s. 283-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Burgess Shale–type biotas occur globally in the Cambrian record and offer unparalleled insight into the Cambrian explosion, the initial Phanerozoic radiation of the Metazoa. Deposits bearing exceptionally preserved soft-bodied fossils are unusually common in Cambrian strata; more than 40 are now known. The well-documented decline of soft-bodied preservation following the Middle Cambrian represents the closure of a taphonomic window that was only intermittently open in marine environments thereafter. The prevailing hypothesis for this secular shift in taphonomic conditions of outer shelf environments is that soft-bodied biotas were literally burrowed away from the fossil record by increasing infaunal activity in muddy substrate environments; this would have affected geochemical gradients and increased the efficiency of organic matter recycling in sediments. New and recently published data, however, suggest a more complex scenario. Ichnologic and microstratigraphic data from Burgess Shale–type deposits indicate that (1) bioturbation exerts a limiting effect on soft-bodied preservation; (2) the observed increase in the depth and extent of bioturbation following the Middle Cambrian would have restricted preservation of Burgess Shale?type biotas in a number of settings; but (3) increasing depth and extent of bioturbation would not have affected preservation in many other settings, including the most richly fossiliferous portions of the Chengjiang (China) deposit and the Greater Phyllopod Bed of the Burgess Shale (Canada). Therefore, increasing bioturbation cannot account for the apparent loss of this pathway from the fossil record, and requires that other circumstances, including, but not limited to, widespread benthic anoxia, facilitated widespread exceptional preservation in the Cambrian.
  •  
11.
  • Gill, Benjamin C., et al. (författare)
  • Redox dynamics of later Cambrian oceans
  • 2021
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier BV. - 0031-0182. ; 581
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of evidence suggests that the deep oceans during the early Paleozoic Era were widely oxygen deficient, despite evidence for increased marine oxygenation during the Neoproterozoic. However, the temporal and geographic extents and dynamics of reducing marine conditions within these oceans are not well understood. Here, we investigate marine redox history during the Drumian through the earliest Jiangshanian International Stages of the Cambrian Period, using concentrations of redox-sensitive metals (vanadium, uranium, and molybdenum), iron speciation, and Mo isotope stratigraphy of the Alum Shale Formation of Scandinavia. These data suggest a major perturbation occurred in trace metal cycling during the later Cambrian Period that was linked to a transient change in marine redox conditions coincident with the well-known Steptoean Positive Isotope Excursion or SPICE. The δ98Mo measurements of the Alum shale show systematic variations during the interval that contains the SPICE which are broadly consistent with a transient expansion of sulfidic, reducing marine environments — indicating a significant exacerbation of an already-common condition during the Cambrian Period. Additionally, iron speciation data record a local transition from predominantly anoxic, ferruginous (Fe+2 containing) to anoxic, euxinic (sulfide containing) water column conditions near the initiation of the SPICE. Trace metal abundances, however, appear to decline well before the start of the SPICE, suggesting an earlier initiation of the global expansion of reducing environments. More broadly, our data and modeling support the notion that significant portions of the oceans remained oxygen deficient throughout the later portion of the Cambrian, and that these oceans were also prone to transient intervals of more reducing conditions similar to the Oceanic Anoxic Events of the Mesozoic.
  •  
12.
  • Hammarlund, Emma, et al. (författare)
  • The influence of sulfate concentration on soft-tissue decay and preservation.
  • 2011
  • Ingår i: Palaeontographica Canadiana. - 0821-7556. ; 31, s. 141-156
  • Tidskriftsartikel (refereegranskat)abstract
    • To explore how seawater chemistry might influence exceptional Burgess Shale-type preservation, freshly-killed shrimp and annelids were covered in clay and exposed to high and low sulfate concentrations for up to six weeks of anaerobic decay. Decay was monitored by carbon mass balance calculations and non-destructive imaging. Decay rates and visual distortion of shrimp cuticle and muscle appear slower in environments without sulfate, compared to environments with normal marine sulfate concentrations. By means of X-ray and neutron tomography, the carapace and tail muscle of shrimp was observed to pass from seemingly intact after three weeks of decay to distorted after six weeks of decay. The distortion of the annelids was more rapid. Preservation of detailed structures must occur within this short time span, in order to produce exceptional fossils. When sulfate is absent, methanogenesis is the dominant pathway of carbon re-mineralization. We argue that a slight inefficiency of methanogenic carbon oxidation, also indicated in other studies, could widen the time frame for initial preservation and enhance the likelihood of labile tissue being preserved, as well as play a role in the formation of Burgess Shale-type carbonaceous compressions.
  •  
13.
  • Hammarlund, Emma U., 1971-, et al. (författare)
  • A sulfidic driver for the end-Ordovician mass extinction
  • 2012
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 331, s. 128-139
  • Tidskriftsartikel (refereegranskat)abstract
    • The end-Ordovician extinction consisted of two discrete pulses, both linked, in various ways, to glaciation at the South Pole. The first phase, starting just below the Normalograptus extraordinarius Zone, particularly affected nektonic and planktonic species, while the second pulse, associated with the Normalograptus persculptus Zone, was less selective. Glacially induced cooling and oxygenation are two of many suggested kill mechanisms for the end-Ordovician extinction, but a general consensus is lacking. We have used geochemical redox indicators, such as iron speciation, molybdenum concentrations, pyrite framboid size distribution and sulfur isotopes to analyze the geochemistry in three key Hirnantian sections. These indicators reveal that reducing conditions were occasionally present at all three sites before the first pulse of the end-Ordovician extinction, and that these conditions expanded towards the second pulse. Even though the N. extraordinarius Zone appears to have been a time of oxygenated deposition, pyrite is significantly enriched in 34S in our sections as well as in sections reported from South China. This suggests a widespread reduction in marine sulfate concentrations, which we attribute to an increase in pyrite burial during the early Hirnantian. The S-isotope excursion coincides with a major positive carbon isotope excursion indicating elevated rates of organic carbon burial as well. We argue that euxinic conditions prevailed and intensified in the early Hirnantian oceans, and that a concomitant global sea level lowering pushed the chemocline deeper than the depositional setting of our sites. In the N. persculptus Zone, an interval associated with a major sea level rise, our redox indicators suggests that euxinic conditions, and ferruginous in some places, encroached onto the continental shelves. In our model, the expansion of euxinic conditions during the N. extraordinarius Zone was generated by a reorganization of nutrient cycling during sea level fall, and we argue, overall, that these dynamics in ocean chemistry played an important role for the end-Ordovician mass extinction. During the first pulse of the extinction, euxinia and a steepened oxygen gradient in the water column caused habitat loss for deep-water benthic and nektonic organisms. During the second pulse, the transgression of anoxic water onto the continental shelves caused extinction in shallower habitats.
  •  
14.
  • Hammarlund, Emma U., et al. (författare)
  • Early Cambrian oxygen minimum zone-like conditions at Chengjiang
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 475, s. 160-168
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian “explosion”. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.
  •  
15.
  • Hammarlund, Emma U., et al. (författare)
  • The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677. ; 17:1, s. 12-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Cambrian Sirius Passet fauna of northernmost Greenland (Cambrian Series 2, Stage 3) contains exceptionally preserved soft tissues that provide an important window to early animal evolution, while the surrounding sediment holds critical data on the palaeodepositional water-column chemistry. The present study combines palaeontological data with a multiproxy geochemical approach based on samples collected in situ at high stratigraphic resolution from Sirius Passet. After careful consideration of chemical alterations during burial, our results demonstrate that fossil preservation and biodiversity show significant correlation with iron enrichments (FeHR/FeT), trace metal behaviour (V/Al), and changes in nitrogen cycling (δ15N). These data, together with Mo/Al and the preservation of organic carbon (TOC), are consistent with a water column that was transiently low in oxygen concentration, or even intermittently anoxic. When compared with the biogeochemical characteristics of modern oxygen minimum zones (OMZs), geochemical and palaeontological data collectively suggest that oxygen concentrations as low as 0.2–0.4 ml/L restricted bioturbation but not the development of a largely nektobenthic community of predators and scavengers. We envisage for the Sirius Passet biota a depositional setting where anoxic water column conditions developed and passed over the depositional site, possibly in association with sea-level change, and where this early Cambrian biota was established in conditions with very low oxygen.
  •  
16.
  • Haxen, Emma R., et al. (författare)
  • “Hypoxic” Silurian oceans suggest early animals thrived in a low-O2 world
  • 2023
  • Ingår i: Earth and Planetary Science Letters. - 0012-821X. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric oxygen (O2) concentrations likely remained below modern levels until the Silurian–Devonian, as indicated by several recent studies. Yet, the background redox state of early Paleozoic oceans remains poorly constrained, hampering our understanding of the relationship between early animal evolution and O2. Here, we present a multi-proxy analysis of redox conditions in the Caledonian foreland basin to Baltica from the early to the mid-Silurian. Our results indicate that anoxic to severely hypoxic bottom waters dominated during deposition of the Silurian sediments cored in the Sommerodde-1 well (Bornholm, Denmark), and regional comparison suggests that these conditions persisted across the Baltoscandian foreland basin. Indeed, even during times of relative oxygenation, ichnological observations indicate that conditions were, at most, very weakly oxic. The results suggest that dissolved O2 was generally scarce in the bottom waters of the extensive Silurian seaway between Baltica and Avalonia, even between Paleozoic “Anoxic Events”. In light of delayed oxygenation of the atmosphere–hydrosphere system, it may be time to consider that early animals were adapted to “hypoxia” and thrived through ∼100 million years of low-O2 conditions after the Cambrian.
  •  
17.
  • Sallstedt, Therese, et al. (författare)
  • Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India.
  • 2018
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 16, s. 139-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Fossil microbiotas are rare in the early rock record, limiting the type of ecological information extractable from ancient microbialites. In the absence of body fossils, emphasis may instead be given to microbially derived features, such as microbialite growth patterns, microbial mat morphologies, and the presence of fossilized gas bubbles in lithified mats. The metabolic affinity of micro-organisms associated with phosphatization may reveal important clues to the nature and accretion of apatite-rich microbialites. Stromatolites from the 1.6 Ga Chitrakoot Formation (Semri Group, Vindhyan Supergroup) in central India contain abundant fossilized bubbles interspersed within fine-grained in situ-precipitated apatite mats with average δ13Corg indicative of carbon fixation by the Calvin cycle. In addition, the mats hold a synsedimentary fossil biota characteristic of cyanobacterial and rhodophyte morphotypes. Phosphatic oncoid cone-like stromatolites from the Paleoproterozoic Aravalli Supergroup (Jhamarkotra Formation) comprise abundant mineralized bubbles enmeshed within tufted filamentous mat fabrics. Construction of these tufts is considered to be the result of filamentous bacteria gliding within microbial mats, and as fossilized bubbles within pristine mat laminae can be used as a proxy for oxygenic phototrophy, this provides a strong indication for cyanobacterial activity in the Aravalli mounds. We suggest that the activity of oxygenic phototrophs may have been significant for the formation of apatite in both Vindhyan and Aravalli stromatolites, mainly by concentrating phosphate and creating steep diurnal redox gradients within mat pore spaces, promoting apatite precipitation. The presence in the Indian stromatolites of alternating apatite-carbonate lamina may result from local variations in pH and oxygen levels caused by photosynthesis–respiration in the mats. Altogether, this study presents new insights into the ecology of ancient phosphatic stromatolites and warrants further exploration into the role of oxygen-producing biotas in the formation of Paleoproterozoic shallow-basin phosphorites.
  •  
18.
  • Zhang, Shuichang, et al. (författare)
  • Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 17:3, s. 225-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mesoproterozoic Era (1,600–1,000 million years ago, Ma) geochemical record is sparse, but, nevertheless, critical in untangling relationships between the evolution of eukaryotic ecosystems and the evolution of Earth-surface chemistry. The ca. 1,400 Ma Xiamaling Formation has experienced only very low-grade thermal maturity and has emerged as a promising geochemical archive informing on the interplay between climate, ecosystem organization, and the chemistry of the atmosphere and oceans. Indeed, the geochemical record of portions of the Xiamaling Formation has been used to place minimum constraints on concentrations of atmospheric oxygen as well as possible influences of climate and climate change on water chemistry and sedimentation dynamics. A recent study has argued, however, that some portions of the Xiamaling Formation deposited in a highly restricted environment with only limited value as a geochemical archive. In this contribution, we fully explore these arguments as well as the underlying assumptions surrounding the use of many proxies used for paleo-environmental reconstructions. In doing so, we pay particular attention to deep-water oxygen-minimum zone environments and show that these generate unique geochemical signals that have been underappreciated. These signals, however, are compatible with the geochemical record of those parts of the Xiamaling Formation interpreted as most restricted. Overall, we conclude that the Xiamaling Formation was most likely open to the global ocean throughout its depositional history. More broadly, we show that proper paleo-environmental reconstructions require an understanding of the biogeochemical signals generated in all relevant modern analogue depositional environments. We also evaluate new data on the δ 98 Mo of Xiamaling Formation shales, revealing possible unknown pathways of molybdenum sequestration into sediments and concluding, finally, that seawater at that time likely had a δ 98 Mo value of about 1.1‰.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy