SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cao Gaolong) "

Sökning: WFRF:(Cao Gaolong)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Gaolong, et al. (författare)
  • Femtosecond laser driven precessing magnetic gratings
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 13:6, s. 3746-3756
  • Tidskriftsartikel (refereegranskat)abstract
    • Manipulation and detection of spins at the nanoscale is of considerable contemporary interest as it may not only facilitate a description of fundamental physical processes but also plays a critical role in the development of spintronic devices. Here, we describe the application of a novel combination of transient grating excitation with Lorentz ultrafast electron microscopy to control and detect magnetization dynamics with combined nanometer and picosecond resolutions. Excitation of Ni80Fe20 thin film samples results in the formation of transient coherently precessing magnetic gratings. From the time-resolved results, we extract detailed real space information of the magnetic precession, including local magnetization, precession frequency, and relevant decay factors. The Lorentz contrast of the dynamics is sensitive to the alignment of the in-plane components of the applied field. The experimental results are rationalized by a model considering local demagnetization and the phase of the precessing magnetic moments. We envision that this technique can be extended to the study of spin waves and dynamic behavior in ferrimagnetic and antiferromagnetic systems.
  •  
2.
  • Ji, Shaozheng, et al. (författare)
  • Influence of cathode geometry on electron dynamics in an ultrafast electron microscope
  • 2017
  • Ingår i: Structural Dynamics. - : American Crystallographic Association. - 2329-7778. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to understand matter at ever-increasing spatial and temporal resolutions have led to the development of instruments such as the ultrafast transmission electron microscope (UEM) that can capture transient processes with combined nanometer and picosecond resolutions. However, analysis by UEM is often associated with extended acquisition times, mainly due to the limitations of the electron gun. Improvements are hampered by tradeoffs in realizing combinations of the conflicting objectives for source size, emittance, and energy and temporal dispersion. Fundamentally, the performance of the gun is a function of the cathode material, the gun and cathode geometry, and the local fields. Especially shank emission from a truncated tip cathode results in severe broadening effects and therefore such electrons must be filtered by applying a Wehnelt bias. Here we study the influence of the cathode geometry and the Wehnelt bias on the performance of a photoelectron gun in a thermionic configuration. We combine experimental analysis with finite element simulations tracing the paths of individual photoelectrons in the relevant 3D geometry. Specifically, we compare the performance of guard ring cathodes with no shank emission to conventional truncated tip geometries. We find that a guard ring cathode allows operation at minimum Wehnelt bias and improve the temporal resolution under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits stronger focus for guard ring than truncated tip cathodes. The increase in temporal spread with bias is mainly a result from a decrease in the accelerating field near the cathode surface. Furthermore, simulations reveal that the temporal dispersion is also influenced by the intrinsic angular distribution in the photoemission process and the initial energy spread. However, a smaller emission spot on the cathode is not a dominant driver for enhancing time resolution. Space charge induced temporal broadening shows a close to linear relation with the number of electrons up to at least 10 000 electrons per pulse. The Wehnelt bias will affect the energy distribution by changing the Rayleigh length, and thus the interaction time, at the crossover.
  •  
3.
  • Li, Zheng, et al. (författare)
  • Inkjet Printed Disposable High-Rate On-Paper Microsupercapacitors
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 32:1, s. 2108773-
  • Tidskriftsartikel (refereegranskat)abstract
    • On-paper microsupercapacitors (MSCs) are a key energy storage component for disposable electronics that are anticipated to essentially address the increasing global concern of electronic waste. However, nearly none of the present on-paper MSCs combine eco-friendliness with high electrochemical performance (especially the rate capacity). In this work, highly reliable conductive inks based on the ternary composite of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), graphene quantum dots and graphene are developed for scalable inkjet printing of compact (footprint area ≈ 20 mm2) disposable MSCs on commercial paper substrates. Without any post treatment, the printed patterns attain a sheet resistance as low as 4 Ω ▫−1. The metal-free all-solid-state MSCs exhibit a maximum areal capacitance > 2 mF cm−2 at a high scan rate of 1000 mV s−1, long cycle life (>95% capacitance retention after 10 000 cycles), excellent flexibility, and long service time. Remarkably, the “totally metal-free” MSC arrays are fully inkjet printed on paper substrates and also exhibit high rate performance. The life cycle assessment indicates that these printed devices have much lower eco-toxicity and global warming potential than other on-paper MSCs.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy