SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carbone G.) "

Sökning: WFRF:(Carbone G.)

  • Resultat 1-50 av 179
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aad, G., et al. (författare)
  • 2016
  • Ingår i: Journal of High Energy Physics. - : Springer. - 1029-8479 .- 1126-6708. ; :1
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Aad, G., et al. (författare)
  • 2015
  • Ingår i: Journal of High Energy Physics. - : Springer. - 1029-8479 .- 1126-6708. ; :12
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Aad, G., et al. (författare)
  • 2015
  • Ingår i: Physical Review D. Particles and fields. - : American Physical Society. - 0556-2821 .- 1089-4918. ; 92:9
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Aad, G., et al. (författare)
  • 2015
  • Ingår i: Physical Review D. Particles and fields. - : American Physics Society. - 0556-2821 .- 1089-4918. ; 92:11
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Aad, G., et al. (författare)
  • 2016
  • Ingår i: Physical Review D. Particles and fields. - : American Physical Society. - 0556-2821 .- 1089-4918. ; 93:1
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • 2021
  • swepub:Mat__t
  •  
8.
  •  
9.
  • Adrian-Martinez, S., et al. (författare)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
  • 2013
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
  •  
10.
  • Aasi, J., et al. (författare)
  • Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
  • 2013
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 88:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection'' where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M(circle dot)-25M(circle dot) and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
  •  
11.
  • Aasi, J., et al. (författare)
  • Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010
  • 2013
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1).
  •  
12.
  • Aasi, J., et al. (författare)
  • The characterization of Virgo data and its impact on gravitational-wave searches
  • 2012
  • Ingår i: Classical and Quantum Gravity. - : IOP Publishing. - 1361-6382 .- 0264-9381. ; 29:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches.
  •  
13.
  • Evans, P. A., et al. (författare)
  • Swift Follow-up Observations of Candidate Gravitational-wave Transient Events
  • 2012
  • Ingår i: The Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 203:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
  •  
14.
  • Aasi, J., et al. (författare)
  • Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
  • 2013
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.
  •  
15.
  • Abadie, J., et al. (författare)
  • All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
  • 2012
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration less than or similar to 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc(3) for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range similar to 5 x 10(-22) Hz(-1/2) to similar to 1 x 10(-20) Hz(-1/2). The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
  •  
16.
  • Abadie, J., et al. (författare)
  • First low-latency LIGO plus Virgo search for binary inspirals and their electromagnetic counterparts
  • 2012
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods. During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results. Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
  •  
17.
  • Abadie, J., et al. (författare)
  • Search for gravitational waves from intermediate mass binary black holes
  • 2012
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450 M-circle dot and with the component mass ratios between 1: and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 M-circle dot, for nonspinning sources, the rate density upper limit is 0.13 per Mpc(3) per Myr at the 90% confidence level.
  •  
18.
  • Abadie, J., et al. (författare)
  • Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
  • 2012
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of Omega(GW)(f) = Omega(3)(f/900 Hz)(3), of Omega(3) < 0.32, assuming a value of the Hubble parameter of h(100) = 0.71. These new limits are a factor of seven better than the previous best in this frequency band.
  •  
19.
  • Abadie, J., et al. (författare)
  • Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 760:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10(-2) M-circle dot c(2) at 150 Hz, with a median limit of 17 Mpc. For short-hard GRBs we place exclusion distances on binary neutron star and neutron-star-black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.
  •  
20.
  •  
21.
  •  
22.
  • Contarini, S., et al. (författare)
  • Euclid : cosmological forecasts from the void size function
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The Euclid mission - with its spectroscopic galaxy survey covering a sky area over 15 000 deg(2) in the redshift range 0.9 < z < 1.8 - will provide a sample of tens of thousands of cosmic voids. This paper thoroughly explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identified voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We modelled the void size function considering a state-of-the art methodology: we relied on the volume-conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We found an excellent agreement between model predictions and measured mock void number counts. We computed updated forecasts for the Euclid mission on DE from the void size function and provided reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analysed two different cosmological models for DE: the first described by a constant DE equation of state parameter, w, and the second by a dynamic equation of state with coefficients w(0) and w(a). We forecast 1 sigma errors on w lower than 10% and we estimated an expected figure of merit (FoM) for the dynamical DE scenario FoM(w0,wa) = 17 when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes.
  •  
23.
  • Usoskin, I. G., et al. (författare)
  • Force-field parameterization of the galactic cosmic ray spectrum : Validation for Forbush decreases
  • 2015
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 55:12, s. 2940-2945
  • Tidskriftsartikel (refereegranskat)abstract
    • A useful parametrization of the energy spectrum of galactic cosmic rays (GCR) near Earth is offered by the so-called force-field model which describes the shape of the entire spectrum with a single parameter, the modulation potential. While the usefulness of the force-field approximation has been confirmed for regular periods of solar modulation, it was not tested explicitly for disturbed periods, when GCR are locally modulated by strong interplanetary transients. Here we use direct measurements of protons and alpha-particles performed by the PAMELA space-borne instrument during December 2006, including a major Forbush decrease, in order to directly test the validity of the force-field parameterization. We conclude that (1) The force-field parametrization works very well in describing the energy spectra of protons and alpha-particles directly measured by PAMELA outside the Earths atmosphere; (2) The energy spectrum of GCR can be well parameterized by the force-field model also during a strong Forbush decrease; (3) The estimate of the GCR modulation parameter, obtained using data from the world-wide neutron monitor network, is in good agreement with the spectra directly measured by PAMELA during the studied interval. This result is obtained on the basis of a single event analysis, more events need to be analyzed.
  •  
24.
  •  
25.
  • Adriani, O., et al. (författare)
  • Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:20, s. 201101-
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e(-) have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 +/- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.
  •  
26.
  • Adriani, O., et al. (författare)
  • Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment
  • 2013
  • Ingår i: JETP Letters. - 0021-3640 .- 1090-6487. ; 96:10, s. 621-627
  • Tidskriftsartikel (refereegranskat)abstract
    • It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works.
  •  
27.
  • Adriani, O., et al. (författare)
  • Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter
  • 2013
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 51:2, s. 219-226
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new measurement of the cosmic ray proton and helium spectra by the PAMELA experiment performed using the "thin" (in terms of nuclei interactions) sampling electromagnetic calorimeter. The described method, optimized by using Monte Carlo simulation, beam test and experimental data, allows the spectra to be measured up to 10 TeV, thus extending the PAMELA observational range based on the magnetic spectrometer measurement.
  •  
28.
  • Adriani, O., et al. (författare)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
29.
  • Adriani, O., et al. (författare)
  • OBSERVATIONS OF THE 2006 DECEMBER 13 AND 14 SOLAR PARTICLE EVENTS IN THE 80 MeV n(-1)-3 GeV n(-1) RANGE FROM SPACE WITH THE PAMELA DETECTOR
  • 2011
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 742:2, s. 102-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the space spectrometer PAMELA observations of proton and helium fluxes during the 2006 December 13 and 14 solar particle events. This is the first direct measurement of the solar energetic particles in space with a single instrument in the energy range from similar to 80 MeV n(-1) up to similar to 3 GeV n(-1). For the December 13 event, measured energy spectra of solar protons and helium are compared with results obtained by neutron monitors and other detectors. Our measurements show a spectral behavior different from those derived from the neutron monitor network. No satisfactory analytical fitting was found for the energy spectra. During the first hours of the December 13 event, solar energetic particles spectra were close to the exponential form, demonstrating rather significant temporal evolution. Solar He with energy up to 1 GeV n(-1) was recorded on December 13. For the December 14 event, energy of solar protons reached 600 MeV, whereas the maximum energy of He was below 100 MeV n(-1). The spectra were slightly bent in the lower energy range and preserved their form during the second event. Differences in the particle flux appearance and temporal evolution of these two events may argue for special conditions leading to the acceleration of solar particles up to relativistic energies.
  •  
30.
  • Adriani, O., et al. (författare)
  • PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 332:6025, s. 69-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.
  •  
31.
  • Adriani, O., et al. (författare)
  • PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:12, s. 121101-
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.
  •  
32.
  • Bazilevskaya, G. A., et al. (författare)
  • Solar energetic particle events in 2006-2012 in the PAMELA experiment data
  • 2013
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 409:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer launched in June 2006 has observed the last strong energetic solar particle event of the 23rd solar cycle in December 2006. Subsequent long minimum of solar activity and weak development of the 24th solar cycle led to a deficit in the solar energetic particle events on the Earth orbit. As a result, only few events with protons accelerated above 100 MeV occurred in 2010-2012. The paper gives the preliminary results on energetic solar particles in the beginning of the 24th solar circle as measured with the PAMELA instrument.
  •  
33.
  • Bazilevskaya, G. A., et al. (författare)
  • Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 493-496
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer was launched into a near-Earth orbit on board the Resurs-DK1 satellite in June 2006; in December 2006, it recorded the last strong solar high-energy particle event of the 23rd solar cycle. A deficit was thereafter observed in solar energetic particle events because of the lengthy solar activity minimum and the weak evolution of the next (24th) solar cycle. As a result, only a few solar events involving protons with energies of more than 100 MeV were recorded between 2010 and 1012. This work presents the preliminary results from measurements of charged particle fluxes in these events, recorded by the Pamela spectrometer.
  •  
34.
  • Bruno, A., et al. (författare)
  • First detection of geomagnetically trapped antiprotons by the PAMELA experiment
  • 2011
  • Ingår i: Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011. - : Institute of High Energy Physics. ; , s. 86-89
  • Konferensbidrag (refereegranskat)abstract
    • We present the measurement of geomagnetically trapped antiprotons in the South Atlantic Anomaly performed by the PAMELA satellite-bourne experiment. The existence of an antiproton radiation belt, predicted by several models as the product of cosmic ray interactions with the residual terrestrial atmosphere, is evidenced for the first time. PAMELA measured the antiproton spectrum in the kinetic energy range between 60 and 750 MeV, reporting a trapped antiproton flux which exceeds by about 3 orders of magnitude the interplanetary cosmic ray antiproton flux. An estimation of the mean under-cutoff antiproton flux outside radiation belts has been also provided.
  •  
35.
  • Bruno, A., et al. (författare)
  • Precise cosmic rays measurements with PAMELA
  • 2013
  • Ingår i: Acta Polytechnica. - 1210-2709. ; 53:Suppl.1, s. 712-717
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium), and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.
  •  
36.
  • Bruno, A., et al. (författare)
  • Solar energetic particle events : Trajectory analysis and flux reconstruction with PAMELA
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of science.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.
  •  
37.
  • Bruno, A., et al. (författare)
  • Trapped protons in SAA measured by the PAMELA experiment
  • 2011
  • Ingår i: Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011. - : Institute of High Energy Physics. ; , s. 82-85
  • Konferensbidrag (refereegranskat)abstract
    • An accurate measurement of under cutoff proton fluxes in the energy range 60 MeV ÷ 3 GeV has been performed by the PAMELA satellite-borne experiment. Thanks to the high identification performances and to the semipolar and elliptic satellite orbit, PAMELA is able to provide information about spectra and composition of particles in different regions of the magnetosphere. Here we present the measurement of the geomagnetically trapped protons from the inner radiation belt (SAA). The fluxes as a function of equatorial pitch angle and McIlwain L-shell are reported.
  •  
38.
  • Carbone, R., et al. (författare)
  • Pamela observation of the 2012 may 17 gle event
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from a few hundred MeV/n up to hundred GeV/n. This wide interval of measured energies makes PAMELA a unique instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). PAMELA has registered many SEP events in solar cycle 24 including the 2012 May 17 GLE event (GLE 71), offering unique opportunities to address the question of high-energy SEP origin. Experimental performances and preliminary results on the 2012 May 17 events will be presented. We will discuss the derived particle injection time and compare with other time scales at the Sun including the flare and CME onset times. 
  •  
39.
  •  
40.
  • De Simone, N., et al. (författare)
  • Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA and Ulysses observations
  • 2011
  • Ingår i: Astrophysics and Space Sciences Transactions (ASTRA). - : Copernicus GmbH. - 1810-6528 .- 1810-6536. ; 7:3, s. 425-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Ulysses, launched on 6 October 1990, was placed in an elliptical, high inclined (80.2°) orbit around the Sun, and was switched off in June 2009. It has been the only spacecraft exploring high-latitude regions of the inner heliosphere. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) space borne experiment was launched on 15 June 2006 and is continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. Thus the combination of Ulysses and PAMELA measurements is ideally suited to determine the spatial gradients during the extended minimum of solar cycle 23. For protons in the rigidity interval 1.6-1.8 GV we find a radial gradient of 2.7%/AU and a latitudinal gradient of -0.024%/degree. Although the latitudinal gradient is as expected negative, its value is much smaller than predicted by current particle propagation models. This result is of relevance for the study of propagation parameters in the inner heliosphere.
  •  
41.
  • De Simone, N., et al. (författare)
  • PAMELA : Measurements of matter and antimatter in space
  • 2011
  • Ingår i: Nuovo cimento della societa italiana de fisica. C, Geophysics and space physics. - 1124-1896 .- 1826-9885. ; 34:3, s. 79-87
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (antihelium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA investigates phenomena connected with solar and earth physics. The main results and updated data will be presented.
  •  
42.
  • Giaccari, U., et al. (författare)
  • Anisotropy studies in the cosmic ray proton flux with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 9th workshop on Science with the New Generation of High Energy Gamma-ray Experiments: From high energy gamma sources to cosmic rays, one century after their discovery. - : Elsevier. ; , s. 123-128
  • Konferensbidrag (refereegranskat)abstract
    • Using data taken by the Pamela experiment during 5 years of operation we studied the anisotropy in the arrival direction distribution of cosmic ray protons with rigidity above 40 GV. In this survey we used two different and independent techniques to investigate the large and medium anisotropy patterns in the proton spectrum. With both methods the observed distribution of arrival directions is consistent with the isotropic expectation and no significant evidence of strong anisotropies has been observed.
  •  
43.
  • Hamaus, N., et al. (författare)
  • Euclid : Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Euclid is poised to survey galaxies across a cosmological volume of unprecedented size, providing observations of more than a billion objects distributed over a third of the full sky. Approximately 20 million of these galaxies will have their spectroscopy available, allowing us to map the three-dimensional large-scale structure of the Universe in great detail. This paper investigates prospects for the detection of cosmic voids therein and the unique benefit they provide for cosmological studies. In particular, we study the imprints of dynamic (redshift-space) and geometric (Alcock-Paczynski) distortions of average void shapes and their constraining power on the growth of structure and cosmological distance ratios. To this end, we made use of the Flagship mock catalog, a state-of-the-art simulation of the data expected to be observed with Euclid. We arranged the data into four adjacent redshift bins, each of which contains about 11000 voids and we estimated the stacked void-galaxy cross-correlation function in every bin. Fitting a linear-theory model to the data, we obtained constraints on f/b and DMH, where f is the linear growth rate of density fluctuations, b the galaxy bias, D-M the comoving angular diameter distance, and H the Hubble rate. In addition, we marginalized over two nuisance parameters included in our model to account for unknown systematic effects in the analysis. With this approach, Euclid will be able to reach a relative precision of about 4% on measurements of f/b and 0.5% on DMH in each redshift bin. Better modeling or calibration of the nuisance parameters may further increase this precision to 1% and 0.4%, respectively. Our results show that the exploitation of cosmic voids in Euclid will provide competitive constraints on cosmology even as a stand-alone probe. For example, the equation-of-state parameter, w, for dark energy will be measured with a precision of about 10%, consistent with previous more approximate forecasts.
  •  
44.
  • Koldobskiy, S. A., et al. (författare)
  • Galactic deuteron spectrum measured in PAMELA experiment
  • 2013
  • Ingår i: 23Rd European Cosmic Ray Symposium (And 32Nd Russian Cosmic Ray Conference). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Results of galactic deuteron spectrum measurement by means of PAMELA apparatus are described. PAMELA is an international experiment developed for antimatter search and measurement of p, He, electron and positron spectra in wide energy range. In addition, PAMELA allows to identify and measure deuteron spectrum at low energies. In this paper deuteron-to-proton ratio and deuteron spectrum are presented.
  •  
45.
  • Koldobskiy, S. A., et al. (författare)
  • Measurement of galactic cosmic-ray deuteron spectrum in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press. - 1062-8738. ; 77:5, s. 606-608
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the results of measuring the deuteron spectrum of Galactic cosmic rays (GCRs) with the PAMELA experiment. The PAMELA is an international experiment. Its main objectives are to search for antimatter and measure proton, helium nuclei, electron, and positron spectra over a wide range of energies. In addition, the experimental setup allows the detection of deuterons and the reconstruction of their spectra at low energies. Cosmic ray deuteron spectrum and the deuteron-proton ratio measured in the PAMELA experiment in the energy range of 50-650 MeV/nucleon are presented below.
  •  
46.
  • Martucci, M., et al. (författare)
  • Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 158-161
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
  •  
47.
  • Mayorov, A. G., et al. (författare)
  • Antiprotons of galactic cosmic radiation in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 602-605
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for antiproton selection against a background of electrons, based on a mathematical model of data classification using variations in interparticle interaction in a calorimeter, and a method for excluding events accompanied by scattering in the inner detectors of a tracking system (which result in errors in the measured trajectory's curvature and charge sign) from analysis are discussed in this paper. Antiproton spectra and antiproton/proton flux ratio at energies of 0.06 to 350 GeV with statistics of events surpassing those in [1] are obtained. The results can be used to create models for the generation and distribution of particles in the Galaxy, and for searching and studying the nature of hypothetical dark matter particles.
  •  
48.
  • Menn, W., et al. (författare)
  • The PAMELA space experiment
  • 2013
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 51:2, s. 209-218
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus is comprised of a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV to 100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA is investigating phenomena connected with solar and earth physics. After 4 years of operation in flight, PAMELA is now delivering coherent results about spectra and chemical composition of the charged cosmic radiation, allowing scenarios of production and propagation of cosmic rays to be fully established and understood.
  •  
49.
  • Mikhailov, V., et al. (författare)
  • Cosmic ray electron and positron spectra measured with PAMELA
  • 2013
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 409:1, s. 012035-
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment is carried out on board of the satellite Resurs DK1 launched on June 15th 2006 on polar orbit (the inclination is 70, the altitude is 350-600 km). The instrument which consists of magnetic spectrometer, silicon-tungsten imaging electromagnetic calorimeter gives a possibility to measure electron and positron fluxes over wide energy range from hundreds MeVs to hundreds GeVs. Measurements made in June 2006- January 2010 are presented and compared with other results and models. Positron spectrum appears to be harder than standard diffusive propagation models predict.
  •  
50.
  • Mocchiutti, E., et al. (författare)
  • Results from PAMELA
  • 2011
  • Ingår i: NUCL PHYS B-PROC SUP. - : Elsevier BV. ; , s. 243-248
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15(th) 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - several hundred GeV). A primary scientific goal is to search for dark matter particle annihilation by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment are presented with a particular focus on cosmic ray antiprotons and positrons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 179
Typ av publikation
tidskriftsartikel (135)
konferensbidrag (39)
forskningsöversikt (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (169)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Casolino, M. (76)
Carbone, R. (72)
Bonvicini, V. (70)
Zampa, G. (70)
Bruno, A. (70)
Marcelli, L. (70)
visa fler...
Osteria, G. (70)
Picozza, P. (70)
Castellini, G. (70)
Boezio, M. (70)
Bongi, M. (70)
Bottai, S. (70)
Simon, M. (70)
Sparvoli, R. (70)
Zampa, N. (70)
Campana, D. (69)
Adriani, O. (69)
Galper, A. M. (69)
Kvashnin, A. N. (69)
Mocchiutti, E. (69)
Spillantini, P. (69)
Vannuccini, E. (69)
Voronov, S. A. (69)
Vacchi, A. (68)
Ricci, M. (68)
Bogomolov, E. A. (68)
Koldashov, S. V. (68)
Menn, W. (68)
Papini, P. (68)
Bazilevskaya, G. A. (67)
Mikhailov, V. V. (67)
Mori, N. (67)
Cafagna, F. (66)
Bellotti, R. (65)
Ricciarini, S. B. (65)
Yurkin, Y. T. (65)
Barbarino, G. C. (64)
Zverev, V. G. (64)
Carlson, Per (63)
Monaco, A. (61)
De Simone, N. (60)
Di Felice, V. (60)
Karelin, A. V. (59)
Stozhkov, Y. I. (58)
Mayorov, A. G. (57)
De Santis, C. (56)
Sarkar, R. (55)
Palma, F. (54)
Krutkov, S. Y. (53)
Leonov, A. (52)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (83)
Karolinska Institutet (46)
Lunds universitet (32)
Uppsala universitet (14)
Stockholms universitet (13)
Göteborgs universitet (8)
visa fler...
Linnéuniversitetet (7)
Chalmers tekniska högskola (6)
Luleå tekniska universitet (2)
RISE (2)
Karlstads universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
Naturhistoriska riksmuseet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (179)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (121)
Medicin och hälsovetenskap (10)
Teknik (5)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy