SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlborg Örjan) "

Sökning: WFRF:(Carlborg Örjan)

  • Resultat 1-50 av 167
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Ahsan, Muhammad, et al. (författare)
  • Genetic analysis and replication of QTL effects on chicken body weight using a multi-locus introgression line
  • 2013
  • Ingår i: Journal of Data Mining in Genomics and Proteomics. - 2153-0602. ; 4, s. 83-83
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Quantitative Trait Loci (QTL) mapping is a useful initial step to dissect the geneticarchitecture of complex biological traits. Intercrosses between divergently selected lines ofanimals is a powerful approach to map loci that affect such traits individually or throughinteractions. The drawback with the approach is a low mapping resolution and consequentlyfurther fine mapping is needed for detailed studies of the mapped loci. We have earliermapped a network of four interacting loci that through reciprocal epistatic capacitationexplains nearly half of the difference in body weight between the Virginia High WeightSelected (HWS) and Low Weight Selected (LWS) chicken lines that after 50 generationsdisplay a 12-fold difference in weight at 56 days of age. The network has been replicated andfine-mapped in an eight-generation Advance Intercross Line (AIL) and its large effect onweight confirmed. A three-locus introgression line has been bred, where the LWS haplotypesat the three loci in the network with the strongest effects on weight have been simultaneouslyintrogressed into the HWS background. Here we describe the first results from a haplotypebasedassociation analysis in this multi-locus introgression line that again replicate the effectsof the introgressed loci on body-weight in the Virginia chicken lines, but also indicate anallelic heterogeneity at the loci within the founder-lines. Further analyses are in progress toevaluate the epistatic effects of the loci in this population as well as the functionalcontribution of the allelic heterogeneity.
  •  
4.
  • Ahsan, Muhammad, et al. (författare)
  • Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP-ChiP data
  • 2013
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Quantitative trait loci (QTL) mapping is a first step to identify chromosomal regions harboring genetic polymorphisms that regulate complex traits. Searching causative mutations for observed effects is sometimes a daunting task as even after fine mapping of the QTL, millions of base pairs including many genes will typically need to be explored. There is thus a great need for efficient bioinformatics strategies to trace the causative mutation(s). Here, we searched for gene transcripts along with mutations regulating body weight at 56 days traits in the Virginia chicken lines – an experimental population comprising two lines that have been divergently selected for 56 days body weight for more than 50 generations. Several QTL regions have been mapped in an F2 intercross between the lines, and the regions have subsequently been replicated and fine mapped using an Advanced Intercross Line (AIL). Candidate transcripts and mutations were here sought in the parts of the QTL regions where the highest genetic divergence between the High-Weight selected (HWS) and Low-Weight selected (LWS) lines was observed. Such regions, 47 Mbp or 35% of the actual QTL regions, were identified by comparing the allele frequencies in the genomes of the HWS and LWS lines using both individual 60K SNP chip genotyping of birds and analysis of read proportions with 12X ABI SOLID genome resequencing of DNA pools. Gene transcripts in the target segments, obtained using the Ensembl genome browser 67, were analyzed with DAVID bioinformatic database to investigate their role in any growth-related functions. Single nucleotide polymorphisms (SNPs) in target segments obtained from resequencing data were analyzed with Variant Effect Predictor (VEP) tool to find their location and functional consequences in gene transcripts. Non-synonymous SNPs (nsSNPs) were scored for their effects on protein function with PASE software (Li et al., submitted). Finally, we present most important candidate gene transcripts from each QTL segment for further functional validation. For example, the cysteine rich transmembrane BMP regulator 1 (chordin-like) gene has growth factor binding and cell growth functions. It carries a nsSNP with high allele frequency difference (0.97) between lines, PASE (0.67) and conservation scores (0.63). Another candidate, glucagon is involved in anorexia and appetite regulation carrying a CpG mutation with high allele frequency difference (0.87) between lines.
  •  
5.
  • Ahsan, Muhammad, et al. (författare)
  • Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP-chip data.
  • 2013
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Mapping of chromosomal regions harboring genetic polymorphisms that regulate complex traits is usually followed by a search for the causative mutations underlying the observed effects. This is often a challenging task even after fine mapping, as millions of base pairs including many genes will typically need to be investigated. Thus to trace the causative mutation(s) there is a great need for efficient bioinformatic strategies. Here, we searched for genes and mutations regulating growth in the Virginia chicken lines - an experimental population comprising two lines that have been divergently selected for body weight at 56 days for more than 50 generations. Several quantitative trait loci (QTL) have been mapped in an F2 intercross between the lines, and the regions have subsequently been replicated and fine mapped using an Advanced Intercross Line. We have further analyzed the QTL regions where the largest genetic divergence between the High-Weight selected (HWS) and Low-Weight selected (LWS) lines was observed. Such regions, covering about 37% of the actual QTL regions, were identified by comparing the allele frequencies of the HWS and LWS lines using both individual 60K SNP chip genotyping of birds and analysis of read proportions from genome resequencing of DNA pools. Based on a combination of criteria including significance of the QTL, allele frequency difference of identified mutations between the selected lines, gene information on relevance for growth, and the predicted functional effects of identified mutations we propose here a subset of candidate mutations of highest priority for further evaluation in functional studies. The candidate mutations were identified within the GCG, IGFBP2, GRB14, CRIM1, FGF16, VEGFR-2, ALG11, EDN1, SNX6, and BIRC7 genes. We believe that the proposed method of combining different types of genomic information increases the probability that the genes underlying the observed QTL effects are represented among the candidate mutations identified.
  •  
6.
  • Albert, Frank W., et al. (författare)
  • Genetic architecture of tameness in a rat model of animal domestication
  • 2009
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 182:2, s. 541-554
  • Tidskriftsartikel (refereegranskat)abstract
    • A common feature of domestic animals is tameness - i.e., they tolerate and are unafraid of human presence and handling. To gain insight into the genetic basis of tameness and aggression, we studied an intercross between two lines of rats (Rattus norvegicus) selected over >60 generations for increased tameness and increased aggression against humans, respectively. We measured 45 traits, including tameness and aggression, anxiety-related traits, organ weights, and levels of serum components in >700 rats from an intercross population. Using 201 genetic markers, we identified two significant quantitative trait loci (QTL) for tameness. These loci overlap with QTL for adrenal gland weight and for anxiety-related traits and are part of a five-locus epistatic network influencing tameness. An additional QTL influences the occurrence of white coat spots, but shows no significant effect on tameness. The loci described here are important starting points for finding the genes that cause tameness in these rats and potentially in domestic animals in general.
  •  
7.
  • Albert, F. W., et al. (författare)
  • Targeted resequencing of a genomic region influencing tameness and aggression reveals multiple signals of positive selection
  • 2011
  • Ingår i: Heredity. - : Springer Science and Business Media LLC. - 0018-067X .- 1365-2540. ; 107:3, s. 205-214
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of the causative genetic variants in quantitative trait loci (QTL) influencing phenotypic traits is challenging, especially in crosses between outbred strains. We have previously identified several QTL influencing tameness and aggression in a cross between two lines of wild-derived, outbred rats (Rattus norvegicus) selected for their behavior towards humans. Here, we use targeted sequence capture and massively parallel sequencing of all genes in the strongest QTL in the founder animals of the cross. We identify many novel sequence variants, several of which are potentially functionally relevant. The QTL contains several regions where either the tame or the aggressive founders contain no sequence variation, and two regions where alternative haplotypes are fixed between the founders. A re-analysis of the QTL signal showed that the causative site is likely to be fixed among the tame founder animals, but that several causative alleles may segregate among the aggressive founder animals. Using a formal test for the detection of positive selection, we find 10 putative positively selected regions, some of which are close to genes known to influence behavior. Together, these results show that the QTL is probably not caused by a single selected site, but may instead represent the joint effects of several sites that were targets of polygenic selection.
  •  
8.
  • Alexander, Michelle, et al. (författare)
  • Mitogenomic analysis of a 50-generation chicken pedigree reveals a rapid rate of mitochondrial evolution and evidence for paternal mtDNA inheritance
  • 2015
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial genomes represent a valuable source of data for evolutionary research, but studies of their short-term evolution have typically been limited to invertebrates, humans and laboratory organisms. Here we present a detailed study of 12 mitochondrial genomes that span a total of 385 transmissions in a well-documented 50-generation pedigree in which two lineages of chickens were selected for low and high juvenile body weight. These data allowed us to test the hypothesis of time-dependent evolutionary rates and the assumption of strict maternal mitochondrial transmission, and to investigate the role of mitochondrial mutations in determining phenotype. The identification of a non-synonymous mutation in ND4L and a synonymous mutation in CYTB, both novel mutations in Gallus, allowed us to estimate a molecular rate of 3.13 x 10(-7) mutations/site/year (95% confidence interval 3.75 x 10(-8)-1.12 x 10(-6)). This is substantially higher than avian rate estimates based upon fossil calibrations. Ascertaining which of the two novel mutations was present in an additional 49 individuals also revealed an instance of paternal inheritance of mtDNA. Lastly, an association analysis demonstrated that neither of the point mutations was strongly associated with the phenotypic differences between the two selection lines. Together, these observations reveal the highly dynamic nature of mitochondrial evolution over short time periods.
  •  
9.
  •  
10.
  • Alvarez-Castro, Jose, et al. (författare)
  • Estimation and interpretation of genetic effects with epistasis using the NOIA model.
  • 2012
  • Ingår i: Methods in Molecular Biology. - Totowa, NJ : Humana Press. - 1064-3745 .- 1940-6029. ; 871, s. 191-204
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.
  •  
11.
  • Álvarez-Castro, José M., et al. (författare)
  • A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis
  • 2007
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 176:2, s. 1151-1167
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction between genes, or epistasis, is found to be common and it is a key, concept for understanding adaptation and evolution of natural populations, response to selection in breeding programs, and determination of complex disease. Current]),, two independent classes of models are used to study epistasis. Statistical models focus on maintaining desired statistical properties for detection and estimation of genetic effects and for the decomposition of genetic variance using average effects of allele Substitutions in populations as parameters. Functional models focus on the evolutionary consequences of the attributes of the genotype-phenotype map using natural effects of allele substitutions as parameters. Here we provide a new, general and unified model framework: the natural and orthogonal interactions (NOIA) model. NOIA implements tools for transforming genetic effects measured in One Population to the ones of other populations (e.g., between two experimental designs for QTL) and parameters of statistical and functional epistasis into each other (thus enabling us to obtain functional estimates of QTL), as demonstrated numerically. We develop graphical interpretations of functional and statistical models as regressions of the genotypic values on the gene content, which illustrates the difference between the models-the constraint on the slope of the functional regression-and when the models are equivalent. Furthermore, we use our theoretical foundations to conceptually clarify functional and statistical epistasis, discuss the advantages of NOIA over previous theory, and stress the importance of linking functional and statistical models.
  •  
12.
  • Alvarez-Castro, Jose M., et al. (författare)
  • How to perform meaningful estimates of genetic effects
  • 2008
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 4:5, s. e1000062-
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F-2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map.
  •  
13.
  • Alvarez-Castro, Jose, et al. (författare)
  • Modelling of genetic interactions improves prediction of hybrid patterns : a case study in domestic fowl
  • 2012
  • Ingår i: Genetical Research. - 0016-6723 .- 1469-5073. ; 94:5, s. 255-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary A major challenge in complex trait genetics is to unravel how multiple loci and environmental factors together cause phenotypic diversity. Both first (F1) and second (F2) generation hybrids often display phenotypes that deviate from what is expected under intermediate inheritance. We have here studied two chicken F2 populations generated by crossing divergent chicken lines to assess how epistatic loci, identified in earlier quantitative trait locus (QTL) studies, contribute to hybrid deviations from the mid-parent phenotype. Empirical evidence suggests that the average phenotypes of the intercross birds tend to be lower than the midpoint between the parental means in both crosses. Our results confirm that epistatic interactions, despite a relatively small contribution to the phenotypic variance, play an important role in the deviation of hybrid phenotypes from the mid-parent values (i.e. multi-locus hybrid genotypes lead to lower rather than higher body weights). To a lesser extent, dominance also appears to contribute to the mid-parent deviation, at least in one of the crosses. This observation coincides with the hypothesis that hybridization tends to break up co-adapted gene complexes, i.e. generate Bateson-Dobzhansky-Muller incompatibilities.
  •  
14.
  •  
15.
  •  
16.
  • Besnier, Francois, 1980-, et al. (författare)
  • A general and efficient method for estimating continuous IBD functions for use in genome scans for QTL
  • 2007
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Identity by descent (IBD) matrix estimation is a central component in mapping of Quantitative Trait Loci (QTL) using variance component models. A large number of algorithms have been developed for estimation of IBD between individuals in populations at discrete locations in the genome for use in genome scans to detect QTL affecting various traits of interest in experimental animal, human and agricultural pedigrees. Here, we propose a new approach to estimate IBD as continuous functions rather than as discrete values. Results: Estimation of IBD functions improved the computational efficiency and memory usage in genome scanning for QTL. We have explored two approaches to obtain continuous marker-bracket IBD-functions. By re-implementing an existing and fast deterministic IBD-estimation method, we show that this approach results in IBD functions that produces the exact same IBD as the original algorithm, but with a greater than 2-fold improvement of the computational efficiency and a considerably lower memory requirement for storing the resulting genome-wide IBD. By developing a general IBD function approximation algorithm, we show that it is possible to estimate marker-bracket IBD functions from IBD matrices estimated at marker locations by any existing IBD estimation algorithm. The general algorithm provides approximations that lead to QTL variance component estimates that even in worst-case scenarios are very similar to the true values. The approach of storing IBD as polynomial IBD-function was also shown to reduce the amount of memory required in genome scans for QTL. Conclusion: In addition to direct improvements in computational and memory efficiency, estimation of IBD-functions is a fundamental step needed to develop and implement new efficient optimization algorithms for high precision localization of QTL. Here, we discuss and test two approaches for estimating IBD functions based on existing IBD estimation algorithms. Our approaches provide immediately useful techniques for use in single QTL analyses in the variance component QTL mapping framework. They will, however, be particularly useful in genome scans for multiple interacting QTL, where the improvements in both computational and memory efficiency are the key for successful development of efficient optimization algorithms to allow widespread use of this methodology.
  •  
17.
  • Besnier, Francois, et al. (författare)
  • A genetic algorithm based method for stringent haplotyping of family data
  • 2009
  • Ingår i: BMC Genetics. - : Springer Science and Business Media LLC. - 1471-2156. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The linkage phase, or haplotype, is an extra level of information that in addition to genotype and pedigree can be useful for reconstructing the inheritance pattern of the alleles in a pedigree, and computing for example Identity By Descent probabilities. If a haplotype is provided, the precision of estimated IBD probabilities increases, as long as the haplotype is estimated without errors. It is therefore important to only use haplotypes that are strongly supported by the available data for IBD estimation, to avoid introducing new errors due to erroneous linkage phases.Results: We propose a genetic algorithm based method for haplotype estimation in family data that includes a stringency parameter. This allows the user to decide the error tolerance level when inferring parental origin of the alleles. This is a novel feature compared to existing methods for haplotype estimation. We show that using a high stringency produces haplotype data with few errors, whereas a low stringency provides haplotype estimates in most situations, but with an increased number of errors.Conclusion: By including a stringency criterion in our haplotyping method, the user is able to maintain the error rate at a suitable level for the particular study; one can select anything from haplotyped data with very small proportion of errors and a higher proportion of non-inferred haplotypes, to data with phase estimates for every marker, when haplotype errors are tolerable. Giving this choice makes the method more flexible and useful in a wide range of applications as it is able to fulfil different requirements regarding the tolerance for haplotype errors, or uncertain marker-phases.
  •  
18.
  • Besnier, Francois, et al. (författare)
  • Fine mapping and replication of QTL in outbred chicken advanced intercross lines
  • 2011
  • Ingår i: Genetics Selection Evolution. - Paris : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 43, s. 3-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature.METHODS: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight.RESULTS: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL.CONCLUSIONS: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed. 
  •  
19.
  •  
20.
  •  
21.
  • Brady, Siobhan M, et al. (författare)
  • Reassess the t Test : Interact with All Your Data via ANOVA.
  • 2015
  • Ingår i: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 27:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant biology is rapidly entering an era where we have the ability to conduct intricate studies that investigate how a plant interacts with the entirety of its environment. This requires complex, large studies to measure how plant genotypes simultaneously interact with a diverse array of environmental stimuli. Successful interpretation of the results from these studies requires us to transition away from the traditional standard of conducting an array of pairwise t tests toward more general linear modeling structures, such as those provided by the extendable ANOVA framework. In this Perspective, we present arguments for making this transition and illustrate how it will help to avoid incorrect conclusions in factorial interaction studies (genotype × genotype, genotype × treatment, and treatment × treatment, or higher levels of interaction) that are becoming more prevalent in this new era of plant biology.
  •  
22.
  • Brandt, Monika, et al. (författare)
  • Imputation-Based Fine-Mapping Suggests That Most QTL in an Outbred Chicken Advanced Intercross Body Weight Line Are Due to Multiple, Linked Loci
  • 2017
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 7:1, s. 119-128
  • Tidskriftsartikel (refereegranskat)abstract
    • The Virginia chicken lines have been divergently selected for juvenile body weight for more than 50 generations. Today, the high- and low-weight lines show a >12-fold difference for the selected trait, 56-d body weight. These lines provide unique opportunities to study the genetic architecture of long-term, single-trait selection. Previously, several quantitative trait loci (QTL) contributing to weight differences between the lines were mapped in an F2-cross between them, and these were later replicated and fine-mapped in a nine-generation advanced intercross of them. Here, we explore the possibility to further increase the fine-mapping resolution of these QTL via a pedigree-based imputation strategy that aims to better capture the genetic diversity in the divergently selected, but outbred, founder lines. The founders of the intercross were high-density genotyped, and then pedigree-based imputation was used to assign genotypes throughout the pedigree. Imputation increased the marker density 20-fold in the selected QTL, providing 6911 markers for the subsequent analysis. Both single-marker association and multi-marker backward-elimination analyses were used to explore regions associated with 56-d body weight. The approach revealed several statistically and population structure independent associations and increased the mapping resolution. Further, most QTL were also found to contain multiple independent associations to markers that were not fixed in the founder populations, implying a complex underlying architecture due to the combined effects of multiple, linked loci perhaps located on independent haplotypes that still segregate in the selected lines.
  •  
23.
  • Carlborg, Örjan, et al. (författare)
  • A global search reveals epistatic interaction between QTL for early growth in the chicken.
  • 2003
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified quantitative trait loci (QTL) explaining a large proportion of the variation in body weights at different ages and growth between chronological ages in an F(2) intercross between red junglefowl and White Leghorn chickens. QTL were mapped using forward selection for loci with significant marginal genetic effects and with a simultaneous search for epistatic QTL pairs. We found 22 significant loci contributing to these traits, nine of these were only found by the simultaneous two-dimensional search, which demonstrates the power of this approach for detecting loci affecting complex traits. We have also estimated the relative contribution of additive, dominance, and epistasis effects to growth and the contribution of epistasis was more pronounced prior to 46 days of age, whereas additive genetic effects explained the major portion of the genetic variance later in life. Several of the detected loci affected either early or late growth but not both. Very few loci affected the entire growth process, which points out that early and late growth, at least to some extent, have different genetic regulation.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Carlborg, Örjan, et al. (författare)
  • Methodological aspects of the genetic dissection of gene expression.
  • 2005
  • Ingår i: Bioinformatics. - 1367-4803 .- 1367-4811. ; 21:10
  • Tidskriftsartikel (refereegranskat)abstract
    • MOTIVATION: Dissection of the genetics underlying gene expression utilizes techniques from microarray analyses as well as quantitative trait loci (QTL) mapping. Available QLT mapping methods are not tailored for the highly automated analyses required to deal with the thousand of gene transcripts encountered in the mapping of QTL affecting gene expression (sometimes referred to as eQTL). This report focuses on the adaptation of QTL mapping methodology to perform automated mapping of QTL affecting gene expression.RESULTS: The analyses of expression data on > 12,000 gene transcripts in BXD recombinant inbred mice found, on average, 629 QTL exceeding the genome-wide 5% threshold. Using additional information on trait repeatabilities and QTL location, 168 of these were classified as 'high confidence' QTL. Current sample sizes of genetical genomics studies make it possible to detect a reasonable number of QTL using simple genetic models, but considerably larger studies are needed to evaluate more complex genetic models. After extensive analyses of real data and additional simulated data (altogether > 300,000 genome scans) we make the following recommendations for detection of QTL for gene expression: (1) For populations with an unbalanced number of replicates on each genotype, weighted least squares should be preferred above ordinary least squares. Weights can be based on repeatability of the trait and the number of replicates. (2) A genome scan based on multiple marker information but analysing only at marker locations is a good approximation to a full interval mapping procedure. (3) Significance testing should be based on empirical genome-wide significance thresholds that are derived for each trait separately. (4) The significant QTL can be separated into high and low confidence QTL using a false discovery rate that incorporates prior information such as transcript repeatabilities and co-localization of gene-transcripts and QTL. (5) Including observations on the founder lines in the QTL analysis should be avoided as it inflates the test statistic and increases the Type I error. (6) To increase the computational efficiency of the study, use of parallel computing is advised. These recommendations are summarized in a possible strategy for mapping of QTL in a least squares framework.AVAILABILITY: The software used for this study is available on request from the authors.
  •  
29.
  •  
30.
  •  
31.
  • Carlborg, Örjan, et al. (författare)
  • Parallel computing in interval mapping of quantitative trait loci.
  • 2002
  • Ingår i: Journal of Heredity. - 0022-1503 .- 1465-7333. ; 92:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Linear regression analysis is considered the least computationally demanding method for mapping quantitative trait loci (QTL). However, simultaneous search for multiple QTL, the use of permutations to obtain empirical significance thresholds, and larger experimental studies significantly increase the computational demand. This report describes an easily implemented parallel algorithm, which significantly reduces the computing time in both QTL mapping and permutation testing. In the example provided, the analysis time was decreased to less than 15% of a single processor system by the use of 18 processors. We indicate how the efficiency of the analysis could be improved by distributing the computations more evenly to the processors and how other ways of distributing the data facilitate the use of more processors. The use of parallel computing in QTL mapping makes it possible to routinely use permutations to obtain empirical significance thresholds for multiple traits and multiple QTL models. It could also be of use to improve the computational efficiency of the more computationally demanding QTL analysis methods.
  •  
32.
  •  
33.
  • Carlborg, Örjan, et al. (författare)
  • Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth.
  • 2004
  • Ingår i: Genetical research. ; 83:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We used simultaneous mapping of interacting quantitative trait locus (QTL) pairs to study various growth traits in a chicken F2 intercross. The method was shown to increase the number of detected QTLs by 30 % compared with a traditional method detecting QTLs by their marginal genetic effects. Epistasis was shown to be an important contributor to the genetic variance of growth, with the largest impact on early growth (before 6 weeks of age). There is also evidence for a discrete set of interacting loci involved in early growth, supporting the previous findings of different genetic regulation of early and late growth in chicken. The genotype-phenotype relationship was evaluated for all interacting QTL pairs and 17 of the 21 evaluated QTL pairs could be assigned to one of four clusters in which the pairs in a cluster have very similar genetic effects on growth. The genetic effects of the pairs indicate commonly occurring dominance-by-dominance, heterosis and multiplicative interactions. The results from this study clearly illustrate the increase in power obtained by using this novel method for simultaneous detection of epistatic QTL, and also how visualization of genotype-phenotype relationships for epistatic QTL pairs provides new insights to biological mechanisms underlying complex traits.
  •  
34.
  • Carlborg, Örjan, et al. (författare)
  • Simultaneous mapping of epistatic QTL in DU6i x DBA/2 mice.
  • 2005
  • Ingår i: Mammalian Genome. - : Springer Science and Business Media LLC. - 0938-8990 .- 1432-1777. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We have mapped epistatic quantitative trait loci (QTL) in an F2 cross between DU6i x DBA/2 mice. By including these epistatic QTL and their interaction parameters in the genetic model, we were able to increase the genetic variance explained substantially (8.8%-128.3%) for several growth and body composition traits. We used an analysis method based on a simultaneous search for epistatic QTL pairs without assuming that the QTL had any effect individually. We were able to detect several QTL that could not be detected in a search for marginal QTL effects because the epistasis cancelled out the individual effects of the QTL. In total, 23 genomic regions were found to contain QTL affecting one or several of the traits and eight of these QTL did not have significant individual effects. We identified 44 QTL pairs with significant effects on the traits, and, for 28 of the pairs, an epistatic QTL model fit the data significantly better than a model without interactions. The epistatic pairs were classified by the significance of the epistatic parameters in the genetic model, and visual inspection of the two-locus genotype means identified six types of related genotype-phenotype patterns among the pairs. Five of these patterns resembled previously published patterns of QTL interactions.
  •  
35.
  • Carlborg, Örjan, et al. (författare)
  • The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci.
  • 2000
  • Ingår i: Genetics. - 0016-6731 .- 1943-2631. ; 155:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe a general method for improving computational efficiency in simultaneous mapping of multiple interacting quantitative trait loci (QTL). The method uses a genetic algorithm to search for QTL in the genome instead of an exhaustive enumerative ("step-by-step") search. It can be used together with any method of QTL mapping based on a genomic search, since it only provides a more efficient way to search the genome for QTL. The computational demand decreases by a factor of approximately 130 when using genetic algorithm-based mapping instead of an exhaustive enumerative search for two QTL in a genome size of 2000 cM using a resolution of 1 cM. The advantage of using a genetic algorithm increases further for larger genomes, higher resolutions, and searches for more QTL. We show that a genetic algorithm-based search has efficiency higher than or equal to a search method conditioned on previously identified QTL for all epistatic models tested and that this efficiency is comparable to that of an exhaustive search for multiple QTL. The genetic algorithm is thus a powerful and computationally tractable alternative to the exhaustive enumerative search for simultaneous mapping of multiple interacting QTL. The use of genetic algorithms for simultaneous mapping of more than two QTL and for determining empirical significance thresholds using permutation tests is also discussed.
  •  
36.
  • Carlborg, Örjan, et al. (författare)
  • Use of randomization testing to detect multiple epistatic QTLs.
  • 2002
  • Ingår i: Genetical research. ; 79:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe a randomization testing strategy for mapping interacting quantitative trait loci (QTLs). In a forward selection strategy, non-interacting QTLs and simultaneously mapped interacting QTL pairs are added to a total genetic model. Simultaneous mapping of epistatic QTLs increases the power of the mapping strategy by allowing detection of interacting QTL pairs where none of the QTL can be detected by their marginal additive and dominance effects. Randomization testing is used to derive empirical significance thresholds for every model selection step in the procedure. A simulation study was used to evaluate the statistical properties of the proposed randomization tests and for which types of epistasis simultaneous mapping of epistatic QTLs adds power. Least squares regression was used for QTL parameter estimation but any other QTL mapping method can be used. A genetic algorithm was used to search for interacting QTL pairs, which makes the proposed strategy feasible for single processor computers. We believe that this method will facilitate the evaluation of the importance at epistatic interaction among QTLs controlling multifactorial traits and disorders.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Crooks, Lucy, et al. (författare)
  • An Improved Method for Estimating Chromosomal Line Origin in QTL Analysis of Crosses Between Outbred Lines
  • 2011
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 1, s. 57-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimating the line origin of chromosomal sections from marker genotypes is a vital step in quantitative trait loci analyses of outbred line crosses. The original, and most commonly used, algorithm can only handle moderate numbers of partially informative markers. The advent of high-density genotyping with SNP chips motivates a new method because the generic sets of markers on SNP chips typically result in long stretches of partially informative markers. We validated a new method for inferring line origin, triM (tracing inheritance with Markov models), with simulated data. A realistic pattern of marker information was achieved by replicating the linkage disequilibrium from an existing chicken intercross. There were approximately 1500 SNP markers and 800 F-2 individuals. The performance of triM was compared to GridQTL, which uses a variant of the original algorithm but modified for larger datasets. triM estimated the line origin with an average error of 2%, was 10% more accurate than GridQTL, considerably faster, and better at inferring positions of recombination. GridQTL could not analyze all simulated replicates and did not estimate line origin for around a third of individuals at many positions. The study shows that triM has computational benefits and improved estimation over available algorithms and is valuable for analyzing the large datasets that will be standard in future.
  •  
41.
  •  
42.
  • Crooks, Lucy, et al. (författare)
  • Comparison of analyses of the QTLMAS XII common dataset. II : genome-wide association and fine mapping.
  • 2009
  • Ingår i: BMC Proceedings. - 1753-6561. ; 3 Suppl 1
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the QTLMAS XII workshop, a simulated dataset was distributed and participants were invited to submit analyses of the data based on genome-wide association, fine mapping and genomic selection. We have evaluated the findings from the groups that reported fine mapping and genome-wide association (GWA) efforts to map quantitative trait loci (QTL). Generally the power to detect QTL was high and the Type 1 error was low. Estimates of QTL locations were generally very accurate. Some methods were much better than others at estimating QTL effects, and with some the accuracy depended on simulated effect size or minor allele frequency. There were also indications of bias in the effect estimates. No epistasis was simulated, but the two studies that included searches for epistasis reported several interacting loci, indicating a problem with controlling the Type I error rate in these analyses. Although this study is based on a single dataset, it indicates that there is a need to improve fine mapping and GWA methods with respect to estimation of genetic effects, appropriate choice of significance thresholds and analysis of epistasis.
  •  
43.
  •  
44.
  •  
45.
  • Crooks, Lucy, et al. (författare)
  • Identification of Null Alleles and Deletions from SNP Genotypes for an Intercross Between Domestic and Wild Chickens
  • 2013
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 3:8, s. 1253-1260
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed genotypes from similar to 10K single-nucleotide polymorphisms (SNPs) in two families of an F-2 intercross between Red Junglefowl and White Leghorn chickens. Possible null alleles were found by patterns of incompatible and missing genotypes. We estimated that 2.6% of SNPs had null alleles compared with 2.3% with genotyping errors and that 40% of SNPs in which a parent and offspring were genotyped as different homozygotes had null alleles. Putative deletions were identified by null alleles at adjacent markers. We found two candidate deletions that were supported by fluorescence intensity data from a 60K SNP chip. One of the candidate deletions was from the Red Junglefowl, and one was present in both the Red Junglefowl and White Leghorn. Both candidate deletions spanned protein-coding regions and were close to a previously detected quantitative trait locus affecting body weight in this population. This study demonstrates that the similar to 50K SNP genotyping arrays now available for several agricultural species can be used to identify null alleles and deletions in data from large families. We suggest that our approach could be a useful complement to linkage analysis in experimental crosses.
  •  
46.
  • de Koning, Dirk-Jan, et al. (författare)
  • The genetic dissection of immune response using gene-expression studies and genome mapping.
  • 2005
  • Ingår i: Veterinary Immunology and Immunopathology. - : Elsevier BV. - 0165-2427 .- 1873-2534. ; 105:3-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional genomics has been applied to the genetic dissection of immune response in different ways: (1) experimental crosses between lines that differ in their (non-) specific immune response have been used to detect quantitative trait loci (QTL) underlying these differences. (2) The measurement of gene expression levels for thousands of genes using microarrays or oligonucleotide chips to identify differential expression with regard to antigen challenge: (a) before and after infection, (b) resistant versus susceptible lines, or (c) combinations of both. Interpretation of QTL results is hampered by the fact that confidence regions of the QTL are large and can contain hundreds of potential candidate genes for the QTL. At the same time, the microarray experiments tend to show large numbers of differentially expressed genes without identifying the relationships between these genes. In the recently proposed 'genetical genomics' framework, members of a segregating population are characterised for genome-wide molecular markers and for gene expression levels. This facilitates the mapping of expression-QTL (eQTL): loci in the genome that control the expression of genes. Initial applications of this approach are critically reviewed and potential applications of this approach with regard to immune response are presented.
  •  
47.
  •  
48.
  • Ek, Weronica, et al. (författare)
  • Generation of a multi-locus chicken introgression line to study the effects of genetic interactions on metabolic phenotypes in chickens.
  • 2012
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Most biological traits are regulated by a complex interplay between genetic and environmental factors. By intercrossing divergent lines, it is possible to identify individual and interacting QTL involved in the genetic architecture of these traits. When the loci have been mapped, alternative strategies are needed for fine-mapping and studying the individual and interactive effects of the QTL in detail. We have previously identified, replicated, and fine mapped a four-locus QTL network that determines nearly half of the eightfold difference in body weight at 56 days of age between two divergently selected chicken lines. Here, we describe, to our knowledge, the first generation of a three-locus QTL introgression line in chickens. Recurrent marker-assisted backcrossing was used to simultaneously transfer QTL alleles from the low-weight selected line into the high-weight selected line. Three generations of backcrossing and one generation of intercrossing resulted in an introgression line where all three introgressed QTL and several unlinked and linked control-loci were segregating at nearly expected allele frequencies. We show how intensive selection can be applied using artificial insemination to rapidly generate a multi-locus introgression line and provide recommendations for future breeding of introgression lines. This confirmed introgression line will facilitate later detailed studies of the effects of genetic interactions on complex traits in this population, including growth, and body-composition traits.
  •  
49.
  • Ek, Weronica, et al. (författare)
  • Genetic analysis of metabolic traits in an intercross between body weight-selected chicken lines
  • 2010
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 42:1, s. 20-22
  • Tidskriftsartikel (refereegranskat)abstract
    • A network of four interacting loci has been reported previously to influence growth in two lines of chickens divergently selected for body weight at 56 days of age. Located on chromosomes 3 (Growth4), 4 (Growth6), 7 (Growth9), and 20 (Growth12), they explained nearly half of the difference in body weight at selection age between the two lines. The original study reported effects on body weight and fat deposition, but no attempts were made to explore the effects of the network on other phenotypes measured in the F(2) population. In this study we conducted further analyses to evaluate the specific effects of the four-locus network on other metabolic traits as well as refining results from the original study by including a larger number of genetic markers in the quantitative trait locus (QTL) regions. We confirm the previously described effect of the epistatic network on body weight and show that the network increases the total amount of muscle and fat as well as the weight of the internal organs. The network as a whole did not change the relative content of any studied organs or tissues in the body. There was, however, a significant interaction between the loci on chromosomes 3 and 7 that changed the relative proportion of abdominal fat and breast muscle in the chicken by increasing abdominal fat weight without a corresponding increase in muscle mass.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 167
Typ av publikation
tidskriftsartikel (113)
konferensbidrag (32)
annan publikation (12)
doktorsavhandling (5)
rapport (3)
forskningsöversikt (2)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (116)
övrigt vetenskapligt/konstnärligt (49)
populärvet., debatt m.m. (2)
Författare/redaktör
Carlborg, Örjan (163)
Andersson, Leif (29)
Pettersson, Mats (21)
Rönnegård, Lars (21)
Siegel, Paul B (16)
Shen, Xia (16)
visa fler...
Kierczak, Marcin (14)
Besnier, Francois (13)
Crooks, Lucy (13)
Zan, Yanjun (12)
Marklund, Stefan (11)
Nelson, Ronald (10)
Andersson, L. (9)
Ek, Weronica (9)
Sheng, Zheya (9)
Jensen, Per (8)
Kerje, Susanne (8)
Honaker, Christa F. (8)
Xidan, Li (7)
Siegel, Paul (7)
Johansson, Anna Mari ... (6)
Ahsan, Muhammad (6)
Alvarez-Castro, Jose (6)
Jacobsson, Lina (6)
Rönneburg, Tilman (6)
Lillie, Mette (6)
Hu, Xiaoxiang (6)
Lindblad-Toh, Kersti ... (5)
Le Rouzic, Arnaud (5)
Rubin, Carl-Johan (5)
Holmgren, Sverker (5)
Guo, Ying (5)
Forsberg, Simon (5)
Forsberg, Simon K. G ... (5)
Tengvall, Katarina (5)
Andersson, Göran (4)
Wahlberg, Per (4)
Álvarez-Castro, José ... (4)
De Koning, Dirk-Jan (4)
Nettelblad, Carl (4)
Schütz, Karin (4)
Li, Ning (4)
Kerje, S (4)
Hedhammar, Åke (3)
Lundberg, Andreas E (3)
Pääbo, Svante (3)
Haley, Chris S (3)
Qu, Hao (3)
Shu, Dingming (3)
Luo, Chenglong (3)
visa färre...
Lärosäte
Uppsala universitet (117)
Sveriges Lantbruksuniversitet (98)
Högskolan Dalarna (16)
Karolinska Institutet (8)
Linköpings universitet (6)
Göteborgs universitet (2)
visa fler...
Umeå universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (165)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (83)
Lantbruksvetenskap (77)
Medicin och hälsovetenskap (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy