SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlhäll Carljohan) "

Sökning: WFRF:(Carlhäll Carljohan)

  • Resultat 1-50 av 96
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brundin, Martin, et al. (författare)
  • Circulating microRNA-29-5p can add to the discrimination between dilated cardiomyopathy and ischaemic heart disease
  • 2021
  • Ingår i: ESC Heart Failure. - : John Wiley & Sons. - 2055-5822. ; 8:5, s. 3865-3874
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Heart failure describes a large and heterogeneous spectrum of underlying cardiac diseases. MicroRNAs (miRs) are small non-coding RNAs that in recent years have been shown to play an important role in the pathogenesis of heart failure. Cardiac magnetic resonance imaging is a powerful imaging modality for the evaluation of cardiac characteristics in heart failure. In this study, we sought to compare heart failure patients with a diagnosis of either idiopathic dilated cardiomyopathy (DCM) or ischaemic heart disease (IHD), in the context of serum levels of certain miRs and also magnetic resonance imaging parameters of cardiac structure and function.Methods and results: A total of 135 subjects were studied: 53 patients with DCM (age: 59 +/- 12 years, mean +/- SD), 34 patients with IHD (66 +/- 9 years), and 48 controls (64 +/- 5 years). The participants underwent baseline medical examination, blood sampling, and a cardiac magnetic resonance imaging examination at 3 Tesla (Philips Ingenia). The serum levels of seven different miRs were analysed and assessed: 16-5p, 21-5p, 29-5p, 133a-3p, 191-5p, 320a, and 423-5p, all of which have been demonstrated to play potential roles in the pathogenesis of heart failure. The patients in the DCM and IHD groups had left ventricles that had larger end-diastolic volume (P < 0.001), larger mass ( P < 0.001), and lower ejection fraction (P < 0.001) compared with controls. Serum levels of miR-29-5p were increased in DCM compared with IHD (P < 0.005) and serum levels of miR-320a were elevated in DCM compared with healthy controls ( P < 0.05). There was no significant association between miR levels and magnetic resonance imaging parameters of left ventricular structure and function.Conclusions: Circulating miR-320a can add to the discrimination between patients with DCM and healthy controls and circulating miR-29-5p can add to the discrimination between DCM and IHD.
  •  
2.
  • Carlén, Anna, et al. (författare)
  • Systolic Blood Pressure Response to Exercise in Endurance Athletes in Relation to Oxygen Uptake, Work Rate and Normative Values
  • 2022
  • Ingår i: Journal of cardiovascular development and disease. - : MDPI AG. - 2308-3425. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Work rate has a direct impact on the systolic blood pressure (SBP) during aerobic exercise, which may be challenging in the evaluation of the SBP response in athletes reaching high work rates. We aimed to investigate the exercise SBP response in endurance athletes in relation to oxygen uptake (VO2), work rate and to recent reference equations for exercise SBP in the general population. Endurance athletes with a left-ventricular end-diastolic diameter above the reference one performed a maximal bicycle cardiopulmonary exercise test. The increase in SBP during exercise was divided by the increase in VO2 (SBP/VO2 slope) and in Watts, respectively (SBP/W slope). The maximum SBP (SBPmax) and the SBP/W slope were compared to the predicted values. In total, 27 athletes (59% men) were included; mean age, 40 ± 10 years; mean VO2max, 50 ± 5 mL/kg/min. The mean SBP/VO2 slope was 29.8 ± 10.2 mm Hg/L/min, and the mean SBP/W slope was 0.27 ± 0.08 mm Hg/W. Compared to the predicted normative values, athletes had, on average, a 12.2 ± 17.6 mm Hg higher SBPmax and a 0.12 ± 0.08 mm Hg/W less steep SBP/W slope (p < 0.01 and p < 0.001, respectively). In conclusion, the higher SBPmax values and the less steep SBP/W slope highlight the importance of considering work rate when interpreting the SBP response in endurance athletes and suggest a need for specific normative values in athletes to help clinicians distinguish physiologically high maximal blood pressure from a pathological blood pressure response.
  •  
3.
  • Ekblom Bak, Elin, 1981-, et al. (författare)
  • Accelerometer derived physical activity and subclinical coronary and carotid atherosclerosis : cross-sectional analyses in 22 703 middle-aged men and women in the SCAPIS study
  • 2023
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: The aim included investigation of the associations between sedentary (SED), low-intensity physical activity (LIPA), moderate-to-vigorous intensity PA (MVPA) and the prevalence of subclinical atherosclerosis in both coronaries and carotids and the estimated difference in prevalence by theoretical reallocation of time in different PA behaviours.DESIGN: Cross-sectional.SETTING: Multisite study at university hospitals.PARTICIPANTS: A total of 22 670 participants without cardiovascular disease (51% women, 57.4 years, SD 4.3) from the population-based Swedish CArdioPulmonary bioImage study were included. SED, LIPA and MVPA were assessed by hip-worn accelerometer.PRIMARY AND SECONDARY OUTCOMES: Any and significant subclinical coronary atherosclerosis (CA), Coronary Artery Calcium Score (CACS) and carotid atherosclerosis (CarA) were derived from imaging data from coronary CT angiography and carotid ultrasound.RESULTS: High daily SED (>70% ≈10.5 hours/day) associated with a higher OR 1.44 (95% CI 1.09 to 1.91), for significant CA, and with lower OR 0.77 (95% CI 0.63 to 0.95), for significant CarA. High LIPA (>55% ≈8 hours/day) associated with lower OR for significant CA 0.70 (95% CI 0.51 to 0.96), and CACS, 0.71 (95% CI 0.51 to 0.97), but with higher OR for CarA 1.41 (95% CI 1.12 to 1.76). MVPA above reference level, >2% ≈20 min/day, associated with lower OR for significant CA (OR range 0.61-0.67), CACS (OR range 0.71-0.75) and CarA (OR range 0.72-0.79). Theoretical replacement of 30 min of SED into an equal amount of MVPA associated with lower OR for significant CA, especially in participants with high SED 0.84 (95% CI 0.76 to 0.96) or low MVPA 0.51 (0.36 to 0.73).CONCLUSIONS: MVPA was associated with a lower risk for significant atherosclerosis in both coronaries and carotids, while the association varied in strength and direction for SED and LIPA, respectively. If causal, clinical implications include avoiding high levels of daily SED and low levels of MVPA to reduce the risk of developing significant subclinical atherosclerosis.
  •  
4.
  • Ekström, Magnus, et al. (författare)
  • Exertional breathlessness related to medical conditions in middle-aged people: the population-based SCAPIS study of more than 25,000 men and women.
  • 2024
  • Ingår i: Respiratory research. - : BioMed Central (BMC). - 1465-993X .- 1465-9921. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Breathlessness is common in the population and can be related to a range of medical conditions. We aimed to evaluate the burden of breathlessness related to different medical conditions in a middle-aged population.Cross-sectional analysis of the population-based Swedish CArdioPulmonary bioImage Study of adults aged 50-64years. Breathlessness (modified Medical Research Council [mMRC]≥2) was evaluated in relation to self-reported symptoms, stress, depression; physician-diagnosed conditions; measured body mass index (BMI), spirometry, venous haemoglobin concentration, coronary artery calcification and stenosis [computer tomography (CT) angiography], and pulmonary emphysema (high-resolution CT). For each condition, the prevalence and breathlessness population attributable fraction (PAF) were calculated, overall and by sex, smoking history, and presence/absence of self-reported cardiorespiratory disease.We included 25,948 people aged 57.5±[SD] 4.4; 51% women; 37% former and 12% current smokers; 43% overweight (BMI 25.0-29.9), 21% obese (BMI≥30); 25% with respiratory disease, 14% depression, 9% cardiac disease, and 3% anemia. Breathlessness was present in 3.7%. Medical conditions most strongly related to the breathlessness prevalence were (PAF 95%CI): overweight and obesity (59.6-66.0%), stress (31.6-76.8%), respiratory disease (20.1-37.1%), depression (17.1-26.6%), cardiac disease (6.3-12.7%), anemia (0.8-3.3%), and peripheral arterial disease (0.3-0.8%). Stress was the main factor in women and current smokers.Breathlessness mainly relates to overweight/obesity and stress and to a lesser extent to comorbidities like respiratory, depressive, and cardiac disorders among middle-aged people in a high-income setting-supporting the importance of lifestyle interventions to reduce the burden of breathlessness in the population.
  •  
5.
  • Lantz, Jonas, 1982-, et al. (författare)
  • Impact of Pulmonary Venous Inflow on Cardiac Flow Simulations : Comparison with In Vivo 4D Flow MRI
  • 2019
  • Ingår i: Annals of Biomedical Engineering. - : Springer-Verlag New York. - 0090-6964 .- 1573-9686. ; 47:2, s. 413-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood flow simulations are making their way into the clinic, and much attention is given to estimation of fractional flow reserve in coronary arteries. Intracardiac blood flow simulations also show promising results, and here the flow field is expected to depend on the pulmonary venous (PV) flow rates. In the absence of in vivo measurements, the distribution of the flow from the individual PVs is often unknown and typically assumed. Here, we performed intracardiac blood flow simulations based on time-resolved computed tomography on three patients, and investigated the effect of the distribution of PV flow rate on the flow field in the left atrium and ventricle. A design-of-experiment approach was used, where PV flow rates were varied in a systematic manner. In total 20 different simulations were performed per patient, and compared to in vivo 4D flow MRI measurements. Results were quantified by kinetic energy, mitral valve velocity profiles and root-mean-square errors of velocity. While large differences in atrial flow were found for varying PV inflow distributions, the effect on ventricular flow was negligible, due to a regularizing effect by mitral valve. Equal flow rate through all PVs most closely resembled in vivo measurements and is recommended in the absence of a priori knowledge.
  •  
6.
  • Andersson, Charlotta, et al. (författare)
  • Phase-contrast MRI volume flow - a comparison of breath held and navigator based acquisitions
  • 2016
  • Ingår i: BMC Medical Imaging. - : BioMed Central. - 1471-2342. ; 16:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Magnetic Resonance Imaging (MRI) 2D phase-contrast flow measurement has been regarded as the gold standard in blood flow measurements and can be performed with free breathing or breath held techniques. We hypothesized that the accuracy of flow measurements obtained with segmented phase-contrast during breath holding, and in particular higher number of k-space segments, would be non-inferior compared to navigator phase-contrast. Volumes obtained from anatomic segmentation of cine MRI and Doppler echocardiography were used for additional reference. Methods: Forty patients, five women and 35 men, mean age 65 years (range 53-80), were randomly selected and consented to the study. All underwent EKG-gated cardiac MRI including breath hold cine, navigator based free-breathing phase-contrast MRI and breath hold phase-contrast MRI using k-space segmentation factors 3 and 5, as well as transthoracic echocardiography within 2 days. Results: In navigator based free-breathing phase-contrast flow, mean stroke volume and cardiac output were 79.7 +/- 17.1 ml and 5071 +/- 1192 ml/min, respectively. The duration of the acquisition was 50 +/- 6 s. With k-space segmentation factor 3, the corresponding values were 77.7 ml +/- 17.5 ml and 4979 +/- 1211 ml/min (p = 0.15 vs navigator). The duration of the breath hold was 17 +/- 2 s. K-space segmentation factor 5 gave mean stroke volume 77.9 +/- 16.4 ml, cardiac output 5142 +/- 1197 ml/min (p = 0.33 vs navigator), and breath hold time 11 +/- 1 s. Anatomical segmentation of cine gave mean stroke volume and cardiac output 91.2 +/- 20.8 ml and 5963 +/- 1452 ml/min, respectively. Echocardiography was reliable in 20 of the 40 patients. The mean diameter of the left ventricular outflow tract was 20.7 +/- 1.5 mm, stroke volume 78.3 ml +/- 15.2 ml and cardiac output 5164 +/- 1249 ml/min. Conclusions: In forty consecutive patients with coronary heart disease, breath holding and segmented k-space sampling techniques for phase-contrast flow produced stroke volumes and cardiac outputs similar to those obtained with free-breathing navigator based phase-contrast MRI, using less time. The values obtained agreed fairly well with Doppler echocardiography while there was a larger difference when compared with anatomical volume determinations using SSFP (steady state free precession) cine MRI.
  •  
7.
  • Ashkir, Zakariye, et al. (författare)
  • Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function
  • 2022
  • Ingår i: Frontiers in Cardiovascular Medicine. - : FRONTIERS MEDIA SA. - 2297-055X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Left ventricular diastolic dysfunction is a major cause of heart failure and carries a poor prognosis. Assessment of left ventricular diastolic function however remains challenging for both echocardiography and conventional phase contrast cardiac magnetic resonance. Amongst other limitations, both are restricted to measuring velocity in a single direction or plane, thereby compromising their ability to capture complex diastolic hemodynamics in health and disease. Time-resolved three-dimensional phase contrast cardiac magnetic resonance imaging with three-directional velocity encoding known as 4D flow CMR is an emerging technology which allows retrospective measurement of velocity and by extension flow at any point in the acquired 3D data volume. With 4D flow CMR, complex aspects of blood flow and ventricular function can be studied throughout the cardiac cycle. 4D flow CMR can facilitate the visualization of functional blood flow components and flow vortices as well as the quantification of novel hemodynamic and functional parameters such as kinetic energy, relative pressure, energy loss and vorticity. In this review, we examine key concepts and novel markers of diastolic function obtained by flow pattern analysis using 4D flow CMR. We consolidate the existing evidence base to highlight the strengths and limitations of 4D flow CMR techniques in the surveillance and diagnosis of left ventricular diastolic dysfunction.
  •  
8.
  • Ashkir, Z., et al. (författare)
  • Novel insights into diminished cardiac reserve in non-obstructive hypertrophic cardiomyopathy from four-dimensional flow cardiac magnetic resonance component analysis
  • 2023
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : OXFORD UNIV PRESS. - 2047-2404 .- 2047-2412. ; 24:9, s. 1192-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Hypertrophic cardiomyopathy (HCM) is characterized by hypercontractility and diastolic dysfunction, which alter blood flow haemodynamics and are linked with increased risk of adverse clinical events. Four-dimensional flow cardiac magnetic resonance (4D-flow CMR) enables comprehensive characterization of ventricular blood flow patterns. We characterized flow component changes in non-obstructive HCM and assessed their relationship with phenotypic severity and sudden cardiac death (SCD) risk. Methods and results Fifty-one participants (37 non-obstructive HCM and 14 matched controls) underwent 4D-flow CMR. Left-ventricular (LV) end-diastolic volume was separated into four components: direct flow (blood transiting the ventricle within one cycle), retained inflow (blood entering the ventricle and retained for one cycle), delayed ejection flow (retained ventricular blood ejected during systole), and residual volume (ventricular blood retained for >two cycles). Flow component distribution and component end-diastolic kinetic energy/mL were estimated. HCM patients demonstrated greater direct flow proportions compared with controls (47.9 +/- 9% vs. 39.4 +/- 6%, P = 0.002), with reduction in other components. Direct flow proportions correlated with LV mass index (r = 0.40, P = 0.004), end-diastolic volume index (r = -0.40, P = 0.017), and SCD risk (r = 0.34, P = 0.039). In contrast to controls, in HCM, stroke volume decreased with increasing direct flow proportions, indicating diminished volumetric reserve. There was no difference in component end-diastolic kinetic energy/mL. Conclusion Non-obstructive HCM possesses a distinctive flow component distribution pattern characterised by greater direct flow proportions, and direct flow-stroke volume uncoupling indicative of diminished cardiac reserve. The correlation of direct flow proportion with phenotypic severity and SCD risk highlight its potential as a novel and sensitive haemodynamic measure of cardiovascular risk in HCM.
  •  
9.
  • Bolger, Ann F, 1957-, et al. (författare)
  • Transit of blood flow through thehuman left ventricle mapped by cardiovascular magnetic resonance
  • 2007
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Informa UK Limited. - 1097-6647 .- 1532-429X. ; 9:5, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context.METHODS:Three dimensional, three directional, time resolved magnetic resonance phase-contrast velocity mapping was performed at 1.5 Tesla in 17 normal subjects, 6 female, aged 44+/-14 years (mean+/-SD). We visualized and measured the relative volumes of LV flow components and the diastolic changes in inflowing kinetic energy (KE). Of total diastolic inflow volume, 44+/-11% followed a direct, albeit curved route to systolic ejection (videos 1 and 2), in contrast to 11% in a subject with mildly dilated cardiomyopathy (DCM), who was included for preliminary comparison (video 3). In normals, 16+/-8% of the KE of inflow was conserved to the end of diastole, compared with 5% in the DCM patient. Blood following the direct route lost or transferred less of its KE during diastole than blood that was retained until the next beat (1.6+/-1.0 millijoules vs 8.2+/-1.9 millijoules, p<0.05); whereas, in the DCM patient, the reduction in KE of retained inflow was 18-fold greater than that of the blood tracing the direct route.CONCLUSION:Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.
  •  
10.
  •  
11.
  • Bothe, Wolfgang, et al. (författare)
  • Effects of acute ischemic mitral regurgitation on three-dimensional mitral leaflet edge geometry
  • 2008
  • Ingår i: European Journal of Cardio-Thoracic Surgery. - : Oxford University Press (OUP). - 1010-7940 .- 1873-734X. ; 33, s. 191-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Improved quantitative understanding of in vivo leaflet geometry in ischemic mitral regurgitation (IMR) is needed to improve reparative techniques, yet few data are available due to current imaging limitations. Using marker technology we tested the hypotheses that IMR (1) occurs chiefly during early systole; (2) affects primarily the valve region contiguous with the myocardial ischemic insult; and (3) results in systolic leaflet edge restriction. Methods: Eleven sheep had radiopaque markers sutured as five opposing pairs along the anterior (A1–E1) and posterior (A2–E2) mitral leaflet free edges from the anterior commissure (A1–A2) to the posterior commissure (E1–E2). Immediately postoperatively, biplane videofluoroscopy was used to obtain 4D marker coordinates before and during acute proximal left circumflex artery occlusion. Regional mitral orifice area (MOA) was calculated in the anterior (Ant-MOA), middle (Mid-MOA), and posterior (Post-MOA) mitral orifice segments during early systole (EarlyS), mid systole (MidS), and end systole (EndS). MOA was normalized to zero (minimum orifice opening) at baseline EndS. Tenting height was the distance of the midpoint of paired markers to the mitral annular plane at EndS. Results: Acute ischemia increased echocardiographic MR grade (0.5 ± 0.3 vs 2.3 ± 0.7, p < 0.01) and MOA in all regions at EarlyS, MidS, and EndS: Ant-MOA (7 ± 10 vs 22 ± 19 mm2, 1 ± 2 vs18 ± 16 mm2, 0 vs 17 ± 15 mm2); Mid-MOA (9 ± 13 vs 25 ± 17 mm2, 3 ± 6 vs 21 ± 19 mm2, 0 vs 25 ± 17 mm2); and Post-MOA (8 ± 10 vs 25 ± 16, 2 ± 4 vs 22 ± 13 mm2, 0 vs 23 ± 13 mm2), all p < 0.05. There was no change in MOA throughout systole (EarlyS vs MidS vs EndS) during baseline conditions or ischemia. Tenting height increased with ischemia near the central and the anterior commissure leaflet edges (B1–B2: 7.1 ± 1.8 mm vs 7.9 ± 1.7 mm, C1–C2: 6.9 ± 1.3 mm vs 8.0 ± 1.5 mm, both p < 0.05). Conclusions: MOA during ischemia was larger throughout systole, indicating that acute IMR in this setting is a holosystolic phenomenon. Despite discrete postero-lateral myocardial ischemia, Post-MOA was not disproportionately larger. Acute ovine IMR was associated with leaflet restriction near the central and the anterior commissure leaflet edges. This entire constellation of annular, valvular, and subvalvular ischemic alterations should be considered in the approach to mitral repair for IMR.
  •  
12.
  •  
13.
  • Bustamante, Mariana, et al. (författare)
  • Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification
  • 2015
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BIOMED CENTRAL LTD. - 1097-6647 .- 1532-429X. ; 17:87
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Flow volume quantification in the great thoracic vessels is used in the assessment of several cardiovascular diseases. Clinically, it is often based on semi-automatic segmentation of a vessel throughout the cardiac cycle in 2D cine phase-contrast Cardiovascular Magnetic Resonance (CMR) images. Three-dimensional (3D), time-resolved phase-contrast CMR with three-directional velocity encoding (4D flow CMR) permits assessment of net flow volumes and flow patterns retrospectively at any location in a time-resolved 3D volume. However, analysis of these datasets can be demanding. The aim of this study is to develop and evaluate a fully automatic method for segmentation and analysis of 4D flow CMR data of the great thoracic vessels. Methods: The proposed method utilizes atlas-based segmentation to segment the great thoracic vessels in systole, and registration between different time frames of the cardiac cycle in order to segment these vessels over time. Additionally, net flow volumes are calculated automatically at locations of interest. The method was applied on 4D flow CMR datasets obtained from 11 healthy volunteers and 10 patients with heart failure. Evaluation of the method was performed visually, and by comparison of net flow volumes in the ascending aorta obtained automatically (using the proposed method), and semi-automatically. Further evaluation was done by comparison of net flow volumes obtained automatically at different locations in the aorta, pulmonary artery, and caval veins. Results: Visual evaluation of the generated segmentations resulted in good outcomes for all the major vessels in all but one dataset. The comparison between automatically and semi-automatically obtained net flow volumes in the ascending aorta resulted in very high correlation (r(2) = 0.926). Moreover, comparison of the net flow volumes obtained automatically in other vessel locations also produced high correlations where expected: pulmonary trunk vs. proximal ascending aorta (r(2) = 0.955), pulmonary trunk vs. pulmonary branches (r(2) = 0.808), and pulmonary trunk vs. caval veins (r(2) = 0.906). Conclusions: The proposed method allows for automatic analysis of 4D flow CMR data, including vessel segmentation, assessment of flow volumes at locations of interest, and 4D flow visualization. This constitutes an important step towards facilitating the clinical utility of 4D flow CMR.
  •  
14.
  • Bustamante, Mariana, 1983- (författare)
  • Automated Assessment of Blood Flow in the Cardiovascular System Using 4D Flow MRI
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Medical image analysis focuses on the extraction of meaningful information from medical images in order to facilitate clinical assessment, diagnostics and treatment. Image processing techniques have gradually become an essential part of the modern health care system, a consequence of the continuous technological improvements and the availability of a variety of medical imaging techniques.Magnetic Resonance Imaging (MRI) is an imaging technique that stands out as non-invasive, highly versatile, and capable of generating high quality images without the use of ionizing radiation. MRI is frequently performed in the clinical setting to assess the morphology and function of the heart and vessels. When focusing on the cardiovascular system, blood flow visualization and quantification is essential in order to fully understand and identify related pathologies. Among the variety of MR techniques available for cardiac imaging, 4D Flow MRI allows for full three-dimensional spatial coverage over time, also including three-directional velocity information. It is a very powerful technique that can be used for retrospective analysis of blood flow dynamics at any location in the acquired volume.In the clinical routine, however, flow analysis is typically done using two-dimensional imaging methods. This can be explained by their shorter acquisition times, higher in-plane spatial resolution and signal-to-noise ratio, and their relatively simpler post-processing requirements when compared to 4D Flow MRI. The extraction of useful knowledge from 4D Flow MR data is especially challenging due to the large amount of information included in these images, and typically requires substantial user interaction.This thesis aims to develop and evaluate techniques that facilitate the post-processing of thoracic 4D Flow MRI by automating the steps necessary to obtain hemodynamic parameters of interest from the data. The proposed methods require little to no user interaction, are fairly quick, make effective use of the information available in the four-dimensional images, and can easily be applied to sizable groups of data.The addition of the proposed techniques to the current pipeline of 4D Flow MRI analysis simplifies and expedites the assessment of these images, thus bringing them closer to the clinical routine.
  •  
15.
  • Bustamante, Mariana, 1983-, et al. (författare)
  • Automated multi-atlas segmentation of cardiac 4D flow MRI
  • 2018
  • Ingår i: Medical Image Analysis. - : Elsevier. - 1361-8415 .- 1361-8423. ; 49, s. 128-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Four-dimensional (4D) flow magnetic resonance imaging (4D Flow MRI) enables acquisition of time-resolved three-directional velocity data in the entire heart and all major thoracic vessels. The segmentation of these tissues is typically performed using semi-automatic methods. Some of which primarily rely on the velocity data and result in a segmentation of the vessels only during the systolic phases. Other methods, mostly applied on the heart, rely on separately acquired balanced Steady State Free Precession (b-SSFP) MR images, after which the segmentations are superimposed on the 4D Flow MRI. While b-SSFP images typically cover the whole cardiac cycle and have good contrast, they suffer from a number of problems, such as large slice thickness, limited coverage of the cardiac anatomy, and being prone to displacement errors caused by respiratory motion. To address these limitations we propose a multi-atlas segmentation method, which relies only on 4D Flow MRI data, to automatically generate four-dimensional segmentations that include the entire thoracic cardiovascular system present in these datasets. The approach was evaluated on 4D Flow MR datasets from a cohort of 27 healthy volunteers and 83 patients with mildly impaired systolic left-ventricular function. Comparison of manual and automatic segmentations of the cardiac chambers at end-systolic and end-diastolic timeframes showed agreements comparable to those previously reported for automatic segmentation methods of b-SSFP MR images. Furthermore, automatic segmentation of the entire thoracic cardiovascular system improves visualization of 4D Flow MRI and facilitates computation of hemodynamic parameters.
  •  
16.
  • Bustamante, Mariana, et al. (författare)
  • Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning
  • 2023
  • Ingår i: Journal of Magnetic Resonance Imaging. - Hoboken, NJ, United States : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 57:1, s. 191-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Segmenting the whole heart over the cardiac cycle in 4D flow MRI is a challenging and time-consuming process, as there is considerable motion and limited contrast between blood and tissue.Purpose To develop and evaluate a deep learning-based segmentation method to automatically segment the cardiac chambers and great thoracic vessels from 4D flow MRI. Study Type Retrospective.Subjects A total of 205 subjects, including 40 healthy volunteers and 165 patients with a variety of cardiac disorders were included. Data were randomly divided into training (n = 144), validation (n = 20), and testing (n = 41) sets.Field Strength/Sequence A 3 T/time-resolved velocity encoded 3D gradient echo sequence (4D flow MRI).Assessment A 3D neural network based on the U-net architecture was trained to segment the four cardiac chambers, aorta, and pulmonary artery. The segmentations generated were compared to manually corrected atlas-based segmentations. End-diastolic (ED) and end-systolic (ES) volumes of the four cardiac chambers were calculated for both segmentations.Statistical tests Dice score, Hausdorff distance, average surface distance, sensitivity, precision, and miss rate were used to measure segmentation accuracy. Bland-Altman analysis was used to evaluate agreement between volumetric parameters.Results The following evaluation metrics were computed: mean Dice score (0.908 +/- 0.023) (mean +/- SD), Hausdorff distance (1.253 +/- 0.293 mm), average surface distance (0.466 +/- 0.136 mm), sensitivity (0.907 +/- 0.032), precision (0.913 +/- 0.028), and miss rate (0.093 +/- 0.032). Bland-Altman analyses showed good agreement between volumetric parameters for all chambers. Limits of agreement as percentage of mean chamber volume (LoA%), left ventricular: 9.3%, 13.5%, left atrial: 12.4%, 16.9%, right ventricular: 9.9%, 15.6%, and right atrial: 18.7%, 14.4%; for ED and ES, respectively.Data conclusion The addition of this technique to the 4D flow MRI assessment pipeline could expedite and improve the utility of this type of acquisition in the clinical setting. Evidence Level 4Technical Efficacy Stage 1
  •  
17.
  • Bustamante, Mariana, et al. (författare)
  • Improving visualization of 4D flow cardiovascular magnetic resonance with four-dimensional angiographic data: generation of a 4D phase-contrast magnetic resonance CardioAngiography (4D PC-MRCA)
  • 2017
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BIOMED CENTRAL LTD. - 1097-6647 .- 1532-429X. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic Resonance Angiography (MRA) and Phase-Contrast MRA (PC-MRA) approaches used for assessment of cardiovascular morphology typically result in data containing information from the entire cardiac cycle combined into one 2D or 3D image. Information specific to each timeframe of the cardiac cycle is, however, lost in this process. This study proposes a novel technique, called Phase-Contrast Magnetic Resonance CardioAngiography (4D PC-MRCA), that utilizes the full potential of 4D Flow CMR when generating temporally resolved PC-MRA data to improve visualization of the heart and major vessels throughout the cardiac cycle. Using non-rigid registration between the timeframes of the 4D Flow CMR acquisition, the technique concentrates information from the entire cardiac cycle into an angiographic dataset at one specific timeframe, taking movement over the cardiac cycle into account. Registration between the timeframes is used once more to generate a time-resolved angiography. The method was evaluated in ten healthy volunteers. Visual comparison of the 4D PC-MRCAs versus PC-MRAs generated from 4D Flow CMR using the traditional approach was performed by two observers using Maximum Intensity Projections (MIPs). The 4D PC-MRCAs resulted in better visibility of the main anatomical regions of the cardiovascular system, especially where cardiac or vessel motion was present. The proposed method represents an improvement over previous PC-MRA generation techniques that rely on 4D Flow CMR, as it effectively utilizes all the information available in the acquisition. The 4D PC-MRCA can be used to visualize the motion of the heart and major vessels throughout the entire cardiac cycle.
  •  
18.
  • Bustamante, Mariana, et al. (författare)
  • Using Deep Learning to Emulate the Use of an External Contrast Agent in Cardiovascular 4D Flow MRI
  • 2021
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 54:3, s. 777-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Although contrast agents would be beneficial, they are seldom used in four-dimensional (4D) flow magnetic resonance imaging (MRI) due to potential side effects and contraindications. Purpose To develop and evaluate a deep learning architecture to generate high blood-tissue contrast in noncontrast 4D flow MRI by emulating the use of an external contrast agent. Study Type Retrospective. Subjects Of 222 data sets, 141 were used for neural network (NN) training (69 with and 72 without contrast agent). Evaluation was performed on the remaining 81 noncontrast data sets. Field Strength/Sequences Gradient echo or echo-planar 4D flow MRI at 1.5 T and 3 T. Assessment A cyclic generative adversarial NN was trained to perform image translation between noncontrast and contrast data. Evaluation was performed quantitatively using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), structural similarity index (SSIM), mean squared error (MSE) of edges, and Dice coefficient of segmentations. Three observers performed a qualitative assessment of blood-tissue contrast, noise, presence of artifacts, and image structure visualization. Statistical Tests The Wilcoxon rank-sum test evaluated statistical significance. Kendalls concordance coefficient assessed interobserver agreement. Results Contrast in the regions of interest (ROIs) in the NN enhanced images increased by 88%, CNR increased by 63%, and SNR improved by 48% (all P < 0.001). The SSIM was 0.82 +/- 0.01, and the MSE of edges was 0.09 +/- 0.01 (range [0,1]). Segmentations based on the generated images resulted in a Dice similarity increase of 15.25%. The observers managed to differentiate between contrast MR images and our results; however, they preferred the NN enhanced images in 76.7% of cases. This percentage increased to 93.3% for phase-contrast MR angiograms created from the NN enhanced data. Visual grading scores were blood-tissue contrast = 4.30 +/- 0.74, noise = 3.12 +/- 0.98, and presence of artifacts = 3.63 +/- 0.76. Image structures within and without the ROIs resulted in scores of 3.42 +/- 0.59 and 3.07 +/- 0.71, respectively (P < 0.001). Data Conclusion The proposed approach improves blood-tissue contrast in MR images and could be used to improve data quality, visualization, and postprocessing of cardiovascular 4D flow data. Evidence Level 3 Technical Efficacy Stage 1
  •  
19.
  • Bäck, Sophia, et al. (författare)
  • Assessment of transmitral and left atrial appendage flow rate from cardiac 4D-CT
  • 2023
  • Ingår i: Communications Medicine. - : Springer Nature. - 2730-664X. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plain language summaryAssessing the blood flow inside the heart is important in diagnosis and treatment of various cardiovascular diseases, such as atrial fibrillation or heart failure. We developed a method to accurately track the motion of the heart walls over the course of a heartbeat in three-dimensional Computed Tomography (CT) images. Based on the motion, we calculated the amount of blood passing through the mitral valve and the left atrial appendage orifice, which are markers used in the diagnostic of heart failure and assessment of stroke risk in atrial fibrillation. The results agreed well with measurements from 4D flow MRI, an imaging technique that measures blood velocities. Our method could broaden the use of CT and make additional exams redundant. It can even be used to calculate the blood flow inside the heart. BackgroundCardiac time-resolved CT (4D-CT) acquisitions provide high quality anatomical images of the heart. However, some cardiac diseases require assessment of blood flow in the heart. Diastolic dysfunction, for instance, is diagnosed by measuring the flow through the mitral valve (MV), while in atrial fibrillation, the flow through the left atrial appendage (LAA) indicates the risk for thrombus formation. Accurate validated techniques to extract this information from 4D-CT have been lacking, however.MethodsTo measure the flow rate though the MV and the LAA from 4D-CT, we developed a motion tracking algorithm that performs a nonrigid deformation of the surface separating the blood pool from the myocardium. To improve the tracking of the LAA, this region was deformed separately from the left atrium and left ventricle. We compared the CT based flow with 4D flow and short axis MRI data from the same individual in 9 patients.ResultsFor the mitral valve flow, good agreement was found for the time span between the early and late diastolic peak flow (bias: <0.1 s). The ventricular stroke volume is similar compared to short-axis MRI (bias 3 ml). There are larger differences in the diastolic peak flow rates, with a larger bias for the early flow rate than the late flow rate. The peak LAA outflow rate measured with both modalities matches well (bias: -6 ml/s).ConclusionsOverall, the developed algorithm provides accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA compared to 4D flow MRI. Back et al. describe a motion tracking algorithm to measure the flow rate through the mitral valve (MV) and the left atrial appendage (LAA) from 4D-CT data. The developed algorithm provided accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA to those measured by 4D flow MRI.
  •  
20.
  • Bäck, Sophia, et al. (författare)
  • Comprehensive left atrial flow component analysis reveals abnormal flow patterns in paroxysmal atrial fibrillation
  • 2024
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : AMER PHYSIOLOGICAL SOC. - 0363-6135 .- 1522-1539. ; 326:3, s. H511-H521
  • Tidskriftsartikel (refereegranskat)abstract
    • Left atrial (LA) blood flow plays an important role in diseases such as atrial fibrillation (AF) and atrial cardiomyopathy since alterations in the blood flow might lead to thrombus formation and stroke. Using traditional techniques, such as echocardiography, atrial flow velocities can be measured at the pulmonary veins and the mitral valve, but a comprehensive understanding of the three-dimensional atrial flow field is missing. Previously, ventricular flow has been analyzed using flow component analysis, revealing new insights into ventricular flow and function. Thus, the aim of this project was to develop a comprehensive flow component analysis method for the LA and explore its utility in 21 patients with paroxysmal atrial fibrillation compared with a control group of 8 participants. The flow field was derived from time-resolved CT acquired during sinus rhythm using computational fluid dynamics. Flow components were computed from particle tracking. We identified six atrial flow components: conduit, reservoir, delayed ejection, retained inflow, residual volume, and pulmonary vein backflow. It was shown that conduit flow, defined as blood entering and leaving the LA within the same diastolic phase, exists in most subjects. Although the volume of conduit and reservoir is similar in patients with paroxysmal AF in sinus rhythm and controls, the volume of the other components is increased in paroxysmal AF. Comprehensive quantification of LA flow using flow component analysis makes atrial blood flow quantifiable, thus facilitating investigation of mechanisms underlying atrial dysfunction and can increase understanding of atrial blood flow in disease progression and stroke risk. NEW & NOTEWORTHY We developed a new comprehensive approach to atrial blood component analysis that includes both conduit flow and residual volume and compared the flow components of atrial fibrillation (AF) patients in sinus rhythm with controls. Conduit and reservoir flow were similar between the groups, whereas components with longer residence time in the left atrium were increased in the AF group. This could add to the pathophysiological understanding of atrial diseases and possibly clinical management.
  •  
21.
  •  
22.
  • Bäck, Sophia, et al. (författare)
  • Elevated atrial blood stasis in paroxysmal atrial fibrillation during sinus rhythm: a patient-specific computational fluid dynamics study
  • 2023
  • Ingår i: Frontiers in Cardiovascular Medicine. - : FRONTIERS MEDIA SA. - 2297-055X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Atrial fibrillation (AF) is associated with an increased risk of stroke, often caused by thrombi that form in the left atrium (LA), and especially in the left atrial appendage (LAA). The underlying mechanism is not fully understood but is thought to be related to stagnant blood flow, which might be present despite sinus rhythm. However, measuring blood flow and stasis in the LAA is challenging due to its small size and low velocities. We aimed to compare the blood flow and stasis in the left atrium of paroxysmal AF patients with controls using computational fluid dynamics (CFD) simulations.Methods : The CFD simulations were based on time-resolved computed tomography including the patient-specific cardiac motion. The pipeline allowed for analysis of 21 patients with paroxysmal AF and 8 controls. Stasis was estimated by computing the blood residence time.Results and Discussion: Residence time was elevated in the AF group (p < 0.001). Linear regression analysis revealed that stasis was strongest associated with LA ejection ratio (p < 0.001, R-2 = 0.68) and the ratio of LA volume and left ventricular stroke volume (p < 0.001, R-2 = 0.81). Stroke risk due to LA thrombi could already be elevated in AF patients during sinus rhythm. In the future, patient specific CFD simulations may add to the assessment of this risk and support diagnosis and treatment.
  •  
23.
  • Carlhäll, Carljohan, 1973-, et al. (författare)
  • A novel method to assess systolic ventricular function using atrioventricular plane displacement : a study in young healthy males and patients with heart disease
  • 2004
  • Ingår i: Clinical Physiology and Functional Imaging. - 1475-0961 .- 1475-097X. ; 24:4, s. 190-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of atrioventricular plane displacement (AVPD) is a well established method for assessment of both systolic and diastolic ventricular function. For several years, AVPD has been a clinical tool and there are many current, as well as potential, areas of application. However, clinical work has shown that the traditional method for evaluation of systolic ventricular function, called total AVPD, does not temporally reflect true systole. Systolic AVPD is a new approach for measuring AVPD to assess ventricular systolic function. We wished to apply this new model in healthy subjects and in patients with different common heart diseases. Twenty-eight young healthy males and 30 patients (aortic stenosis, left sided regurgitant lesions, postmyocardial infarction) were enrolled. AVPD was obtained at the four standard sites by M-mode. Total AVPD was measured in the conventional way and systolic AVPD by identifying true systole, by means of mitral- and aortic valve closure respectively. Ventricular volumes were calculated according to biplane Simpson's rule. The systolic AVPD measurements were significantly lower than the total measurements, at both atrioventricular planes in all groups (P<0·001). This discrepancy was greater at the mitral than at the tricuspid annulus in the patients 24·2% vs. 15·5% (P<0·001), but did not differ in the healthy subjects. At the mitral annulus, this discrepancy also seemed to be more pronounced in the patients than in the healthy subjects 24·2% vs. 10·7%. When assessing ventricular systolic function by AVPD, the conventional method overestimates the amplitude in relation to true systolic function in both patients with heart disease and in young healthy males. Thus, there are uncertainties regarding earlier estimations of AVPD in terms of expression of systolic function and regarding previously presented reference values. We recommend the proposed methodology.
  •  
24.
  • Carlhäll, Carljohan, et al. (författare)
  • Alterations in transmural myocardial strain - An early marker of left ventricular dysfunction in mitral regurgitation?
  • 2008
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 118:14, s. S256-S262
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-In asymptomatic patients with severe isolated mitral regurgitation (MR), identifying the onset of early left ventricular (LV) dysfunction can guide the timing of surgical intervention. We hypothesized that changes in LV transmural myocardial strain represent an early marker of LV dysfunction in an ovine chronic MR model. Methods and Results-Sheep were randomized to control (CTRL, n = 8) or experimental (EXP, n = 12) groups. In EXP, a 3.5-or 4.8-mm hole was created in the posterior mitral leaflet to generate "pure" MR. Transmural beadsets were inserted into the lateral and anterior LV wall to radiographically measure 3-dimensional transmural strains during systole and diastolic filling, at 1 and 12 weeks postoperatively. MR grade was higher in EXP than CTRL at 1 and 12 weeks (3.0 [2-4] versus 0.5 [0-2], 3.0 [1-4] versus 0.5 [0-1], respectively, both P < 0.001). At 12 weeks, LV mass index was greater in EXP than CTRL (201 +/- 18 versus 173 +/- 17 g/m(2), P < 0.01). LVEDVI increased in EXP from 1 to 12 weeks (P = 0.015). Between the 1 and 12 week values, the change in BNP (-4.5 +/- 4.4 versus-3.0 +/- 3.6 pmol/L), PRSW (9 +/- 13 versus 23 +/- 18 mm Hg), tau (-3 +/- 11 versus-4 +/- 7 ms), and systolic strains was similar between EXP and CTRL. The changes in longitudinal diastolic filling strains between 1 and 12 weeks, however, were greater in EXP versus CTRL in the subendocardium (lateral:-0.08 +/- 0.05 versus 0.02 +/- 0.14, anterior:-0.10 +/- 0.05 versus-0.02 +/- 0.07, both P < 0.01). Conclusions-Twelve weeks of ovine "pure" MR caused LV remodeling with early changes in LV function detected by alterations in transmural myocardial strain, but not by changes in BNP, PRSW, or tau.
  •  
25.
  • Carlhäll, Carljohan, 1973- (författare)
  • Annular dynamics of the human heart : novel echocardiographic approaches to assess ventricular function
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The complex myocardial fiber architecture of the left ventricle (LV) enables long-axis motion (annular excursion), short-axis motion and also a small torsional deformation throughout the cardiac cycle. The contribution of the long-axis motion has proven to be important in generating ventricular filling and emptying, and the analysis of annular excursion has become a well established diagnostic tool for the assessment of ventricular function. Cardiac motion can be accurately described with modem non-invasive imaging teclmiques, and this is important ground for deeper understanding and more reliable diagnosis of cardiovascular disease. The focus of this thesis was to provide new insights into cardiac pump function using variables originating from the annular excursion and dynamic changes in shape, applying both established and novel echocardiographic imaging approaches.The traditional method of evaluating systolic ventricular fimction according to the total annular excursion overestimates the excursion amplitude in relation to true systolic fimction. A novel method presented here, measurement of the systolic annular excursion, more accurately reflects the timing of true systole, and was applied both in patients with heart disease and in healthy subjects. To date, the form of asynchronous myocardial motion called postsystolic shortening (PSS) has mainly been observed in the setting of myocardial ischemia. The significance of PSS in hypertensive heart disease remains incompletely described. We found that a subgroup of hypertensive patients with PSS along the LV long-axis had signs of more severe cardiac involvement unrelated to the level of blood pressure. Endurance trained subjects showed a larger LV long-axis motion as compared to strength trained and untrained controls. Mitral annular (MA) excursion correlated strongly to LV stroke volume, end-diastolic volume and maximal oxygen consumption per body weight, but weakly to LV ejection fraction. These findings provide further evidence of the importance of annular excursion to normal cardiac performance. In order to assess the contribution of MA excursion and shape dynamics to total LV volume change in humans, a novel 4-dimensional transesophageal echocardiography teclmique was developed. The excursion of the annulus accounted for an important portion (19±3%) of the total LV filling and emptying in healthy human subjects. Furthermore, our findings elucidate an atrial influence on MA physiology in humans, as well as a sphincter-like action of the MA. These temporal changes may facilitate ventricular filling by annular expansion during early and mid diastole, and aid competent valve closure during the marked decrease in annular area during late diastole and early systole.
  •  
26.
  •  
27.
  • Carlhäll, Carljohan, 1973-, et al. (författare)
  • Atrioventricular plane displacement correlates closely to circulatory dimensions but not to ejection fraction in normal young subjects
  • 2001
  • Ingår i: Clinical Physiology. - : Wiley. - 0144-5979 .- 1365-2281. ; 21:5, s. 621-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Mitral atrioventricular plane displacement (AVPD) provides information about left ventricular systolic function. M-mode of systolic annulus amplitude or tissue Doppler imaging of systolic annulus velocity are the current methods of evaluating AVPD. A correlation to ejection fraction (EF) has been demonstrated in patients with coronary artery disease and left ventricular dysfunction. Our aim was (i) to investigate the mitral AVPD of normal subjects with different physical work capacities and (ii) to further evaluate AVPD as an index of left ventricular systolic function.Methods and results Twenty-eight healthy men mean age 28 years (20–39) were included: endurance trained (ET) (n=10), strength trained (ST) (n=9) and untrained (UT) (n=9). The systolic AVPD was recorded at four sites, septal, lateral, anterior and posterior, using M-mode. Left ventricular volumes were calculated according to Simpson’s rule. Systolic AVPD was higher in endurance trained, 16·9 ± 1·5 mm, as compared with both strength trained, 13 ± 1·6 (P<0·001) and untrained, 14 ± 1·6 (P<0·001). Left ventricular systolic AVPD correlated strongly with end-diastolic volume (r=0·82), stroke volume (r=0·80) and maximal oxygen consumption per body weight (r=0·72). The correlation between AVPD and EF was poor (r=0·22).Conclusion  In the subjects studied, with a range of normal cardiac dimensions, AVPD correlated to stroke volume, end-diastolic volume and maximal oxygen consumption per body weight, but not to EF. On theoretical grounds, it also seems reasonable that a dimension like AVPD is related to other cardiac dimensions and volumes, rather than to a fraction, like EF. AVPD is one parameter that is useful for evaluation of left ventricular systolic function but is not interchangeable with other measurements such as EF.
  •  
28.
  • Carlhäll, Carljohan, 1973-, et al. (författare)
  • Contribution of mitral annular dynamics to LV diastolic filling with alteration in preload and inotropic state
  • 2007
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 293:3, s. G1473-H1479
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitral annular (MA) excursion during diastole encompasses a volume that is part of total left ventricular (LV) filling volume (LVFV). Altered excursion or area variation of the MA due to changes in preload or inotropic state could affect LV filling. We hypothesized that changes in LV preload and inotropic state would not alter the contribution of MA dynamics to LVFV. Six sheep underwent marker implantation in the LV wall and around the MA. After 7–10 days, biplane fluoroscopy was used to obtain three-dimensional marker dynamics from sedated, closed-chest animals during control conditions, inotropic augmentation with calcium (Ca), preload reduction with nitroprusside (N), and vena caval occlusion (VCO). The contribution of MA dynamics to total LVFV was assessed using volume estimates based on multiple tetrahedra defined by the three-dimensional marker positions. Neither the absolute nor the relative contribution of MA dynamics to LVFV changed with Ca or N, although MA area decreased (Ca, P < 0.01; and N, P < 0.05) and excursion increased (Ca, P < 0.01). During VCO, the absolute contribution of MA dynamics to LVFV decreased (P < 0.001), based on a reduction in both area (P < 0.001) and excursion (P < 0.01), but the relative contribution to LVFV increased from 18 ± 4 to 45 ± 13% (P < 0.001). Thus MA dynamics contribute substantially to LV diastolic filling. Although MA excursion and mean area change with moderate preload reduction and inotropic augmentation, the contribution of MA dynamics to total LVFV is constant with sizeable magnitude. With marked preload reduction (VCO), the contribution of MA dynamics to LVFV becomes even more important.
  •  
29.
  • Carlhäll, Carljohan, 1973-, et al. (författare)
  • Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change
  • 2004
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 287:4, s. H1836-H1841
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitral annulus (MA) has a complex shape and motion, and its excursion has been correlated to left ventricular (LV) function. During the cardiac cycle the annulus’ excursion encompasses a volume that is part of the total LV volume change during both filling and emptying. Our objective was to evaluate the contribution of MA excursion and shape variation to total LV volume change. Nine healthy subjects aged 56 ± 11 (means ± SD) years underwent transesophageal echocardiography (TEE). The MA was outlined in all time frames, and a four-dimensional (4-D) Fourier series was fitted to the MA coordinates (3-D+time) and divided into segments. The annular excursion volume (AEV) was calculated based on the temporally integrated product of the segments’ area and their incremental excursion. The 3-D LV volumes were calculated by tracing the endocardial border in six coaxial planes. The AEV (10 ± 2 ml) represented 19 ± 3% of the total LV stroke volume (52 ± 12 ml). The AEV correlated strongly with LV stroke volume (r = 0.73; P < 0.05). Peak MA area occurred during middiastole, and 91 ± 7% of reduction in area from peak to minimum occurred before the onset of LV systole. The excursion of the MA accounts for an important portion of the total LV filling and emptying in humans. These data suggest an atriogenic influence on MA physiology and also a sphincter-like action of the MA that may facilitate ventricular filling and aid competent valve closure. This 4-D TEE method is the first to allow noninvasive measurement of AEV and may be used to investigate the impact of physiological and pathological conditions on this important aspect of LV performance.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Casas Garcia, Belén, et al. (författare)
  • Bridging the gap between measurements and modelling : a cardiovascular functional avatar
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.
  •  
35.
  • Casas Garcia, Belén, et al. (författare)
  • Non-invasive Assessment of Systolic and Diastolic Cardiac Function During Rest and Stress Conditions Using an Integrated Image-Modeling Approach
  • 2018
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The possibility of non-invasively assessing load-independent parameters characterizing cardiac function is of high clinical value. Typically, these parameters are assessed during resting conditions. However, for diagnostic purposes, the parameter behavior across a physiologically relevant range of heart rate and loads is more relevant than the isolated measurements performed at rest. This study sought to evaluate changes in non-invasive estimations of load-independent parameters of left-ventricular contraction and relaxation patterns at rest and during dobutamine stress. Methods: We applied a previously developed approach that combines non-invasive measurements with a physiologically-based, reduced-order model of the cardiovascular system to provide subject-specific estimates of parameters characterizing left ventricular function. In this model, the contractile state of the heart at each time point along the cardiac cycle is modeled using a time-varying elastance curve. Non-invasive data, including four-dimensional magnetic resonance imaging (4D Flow MRI) measurements, were acquired in nine subjects without a known heart disease at rest and during dobutamine stress. For each of the study subjects, we constructed two personalized models corresponding to the resting and the stress state. Results: Applying the modeling framework, we identified significant increases in the left ventricular contraction rate constant [from 1.5 +/- 0.3 to 2 +/- 0.5 (p = 0.038)] and relaxation constant [from 37.2 +/- 6.9 to 46.1 +/- 12 (p = 0.028)]. In addition, we found a significant decrease in the elastance diastolic time constant from 0.4 +/- 0.04 s to 0.3 +/- 0.03 s = 0.008). Conclusions: The integrated image-modeling approach allows the assessment of cardiovascular function given as model-based parameters. The agreement between the estimated parameter values and previously reported effects of dobutamine demonstrates the potential of the approach to assess advanced metrics of pathophysiology that are otherwise difficult to obtain non-invasively in clinical practice.
  •  
36.
  • Casas Garcia, Belén, 1985- (författare)
  • Towards Personalized Models of the Cardiovascular System Using 4D Flow MRI
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Current diagnostic tools for assessing cardiovascular disease mostly focus on measuring a given biomarker at a specific spatial location where an abnormality is suspected. However, as a result of the dynamic and complex nature of the cardiovascular system, the analysis of isolated biomarkers is generally not sufficient to characterize the pathological mechanisms behind a disease. Model-based approaches that integrate the mechanisms through which different components interact, and present possibilities for system-level analyses, give us a better picture of a patient’s overall health status.One of the main goals of cardiovascular modelling is the development of personalized models based on clinical measurements. Recent years have seen remarkable advances in medical imaging and the use of personalized models is slowly becoming a reality. Modern imaging techniques can provide an unprecedented amount of anatomical and functional information about the heart and vessels. In this context, three-dimensional, three-directional, cine phase-contrast (PC) magnetic resonance imaging (MRI), commonly referred to as 4D Flow MRI, arises as a powerful tool for creating personalized models. 4D Flow MRI enables the measurement of time-resolved velocity information with volumetric coverage. Besides providing a rich dataset within a single acquisition, the technique permits retrospective analysis of the data at any location within the acquired volume.This thesis focuses on improving subject-specific assessment of cardiovascular function through model-based analysis of 4D Flow MRI data. By using computational models, we aimed to provide mechanistic explanations of the underlying physiological processes, derive novel or improved hemodynamic markers, and estimate quantities that typically require invasive measurements. Paper I presents an evaluation of current markers of stenosis severity using advanced models to simulate flow through a stenosis. Paper II presents a framework to personalize a reduced-order, mechanistic model of the cardiovascular system using exclusively non-invasive measurements, including 4D Flow MRI data. The modelling approach can unravel a number of clinically relevant parameters from the input data, including those representing the contraction and relaxation patterns of the left ventricle, and provide estimations of the pressure-volume loop. In Paper III, this framework is applied to study cardiovascular function at rest and during stress conditions, and the capability of the model to infer load-independent measures of heart function based on the imaging data is demonstrated. Paper IV focuses on evaluating the reliability of the model parameters as a step towards translation of the model to the clinic.
  •  
37.
  • Charitakis, Emmanouil, et al. (författare)
  • Echocardiographic and Biochemical Factors Predicting Arrhythmia Recurrence After Catheter Ablation of Atrial Fibrillation-An Observational Study
  • 2019
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: RFA is a well-established treatment for symptomatic patients with AF. However, the success rate of a single procedure is low. We aimed to investigate the association between the risk of recurrence of atrial fibrillation (AF) after a single radiofrequency ablation (RFA) procedure and cardiac neurohormonal function, left atrial (LA) mechanical function as well as proteins related to inflammation, fibrosis, and apoptosis. Methods and Results: We studied 189 patients undergoing RFA between January 2012 and April 2014, with a follow-up period of 12 months. A logistic regression analysis was performed to investigate the association between pre-ablation LA emptying fraction (LAEF), MR-proANP, Caspase-8 (CASP8), Neurotrophin-3 (NT3), and the risk for recurrence of AF after a single RFA procedure. 119 (63.0%) patients had a recurrence during a mean follow-up of 402 +/- 73 days. An increased risk of recurrence was associated with: Elevated MR-proANP (fourth quartile vs. first quartile: HR, 2.80 (95% CI, 1.14-6.90]; P = 0.025); Low LAEF (fourth quartile vs. first quartile: hazard ratio [HR], 2.41 [95% CI, 1.01-5.79]; P = 0.045); Elevated CASP8 (fourth quartile vs. first quartile: HR 12.198 95% CI 2.216-67.129; P = 0.004); Elevated NT-3 (fourth quartile vs. first quartile: HR 7.485 95% CI 1.353-41.402; P = 0.021). In a receiver operating characteristic curve analysis, the combination of MR-proANP, CASP8, and NT3 produced an area under the curve of 0.819; CI 95% (0.710-0.928). Conclusions: Patients with better LA mechanical function and lower levels of atrial neurohormones as well as of proteins related to fibrosis and apoptosis, have a better outcome after an RFA procedure.
  •  
38.
  • Cibis, Merih, et al. (författare)
  • Creating Hemodynamic Atlases of Cardiac 4D Flow MRI
  • 2017
  • Ingår i: Journal of Magnetic Resonance Imaging. - : WILEY. - 1053-1807 .- 1522-2586. ; 46:5, s. 1389-1399
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Hemodynamic atlases can add to the pathophysiological understanding of cardiac diseases. This study proposes a method to create hemodynamic atlases using 4D Flow magnetic resonance imaging (MRI). The method is demonstrated for kinetic energy (KE) and helicity density (Hd). Materials and Methods: Thirteen healthy subjects underwent 4D Flow MRI at 3T. Phase-contrast magnetic resonance cardioangiographies (PC-MRCAs) and an average heart were created and segmented. The PC-MRCAs, KE, and Hd were nonrigidly registered to the average heart to create atlases. The method was compared with 1) rigid, 2) affine registration of the PC-MRCAs, and 3) affine registration of segmentations. The peak and mean KE and Hd before and after registration were calculated to evaluate interpolation error due to nonrigid registration. Results: The segmentations deformed using nonrigid registration overlapped (median: 92.3%) more than rigid (23.1%, P amp;lt; 0.001), and affine registration of PC-MRCAs (38.5%, P amp;lt; 0.001) and affine registration of segmentations (61.5%, P amp;lt; 0.001). The peak KE was 4.9 mJ using the proposed method and affine registration of segmentations (P50.91), 3.5 mJ using rigid registration (P amp;lt; 0.001), and 4.2 mJ using affine registration of the PC-MRCAs (P amp;lt; 0.001). The mean KE was 1.1 mJ using the proposed method, 0.8 mJ using rigid registration (P amp;lt; 0.001), 0.9 mJ using affine registration of the PC-MRCAs (P amp;lt; 0.001), and 1.0 mJ using affine registration of segmentations (P50.028). The interpolation error was 5.262.6% at mid-systole, 2.863.8% at early diastole for peak KE; 9.669.3% at mid-systole, 4.064.6% at early diastole, and 4.964.6% at late diastole for peak Hd. The mean KE and Hd were not affected by interpolation. Conclusion: Hemodynamic atlases can be obtained with minimal user interaction using nonrigid registration of 4D Flow MRI. Level of Evidence: 2 Technical Efficacy: Stage 1
  •  
39.
  • Cibis, Merih, et al. (författare)
  • Left Atrial 4D Blood Flow Dynamics and Hemostasis following Electrical Cardioversion of Atrial Fibrillation
  • 2017
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Electrical cardioversion in patients with atrial fibrillation is followed by a transiently impaired atrial mechanical function, termed atrial stunning. During atrial stunning, a retained risk of left atrial thrombus formation exists, which may be attributed to abnormal left atrial blood flow patterns. 4D Flow cardiovascular magnetic resonance (CMR) enables blood flow assessment from the entire three-dimensional atrial volume throughout the cardiac cycle. We sought to investigate left atrial 4D blood flow patterns and hemostasis during left atrial stunning and after left atrial mechanical function was restored. Methods: 4D Flow and morphological CMR data as well as blood samples were collected in fourteen patients at two time-points: 2-3 h (Time-1) and 4 weeks (Time-2) following cardioversion. The volume of blood stasis and duration of blood stasis were calculated. In addition, hemostasis markers were analyzed. Results: From Time-1 to Time-2: Heart rate decreased (61 +/- 7 vs. 56 +/- 8 bpm, p = 0.01); Maximum change in left atrial volume increased (8 +/- 4 vs. 22 +/- 15%, p = 0.009); The duration of stasis (68 +/- 11 vs. 57 +/- 8%, p = 0.002) and the volume of stasis (14 +/- 9 vs. 9 +/- 7%, p = 0.04) decreased; Thrombin-antithrombin complex (TAT) decreased (5.2 +/- 3.3 vs. 3.3 +/- 2.2it.g/L, p = 0.008). A significant correlation was found between TAT and the volume of stasis (r(2) = 0.69, p amp;lt; 0.001) at Time-1 and between TAT and the duration of stasis (r(2) = 0.34, p = 0.04) at Time-2. Conclusion: In this longitudinal study, left atrial multidimensional blood flow was altered and blood stasis was elevated during left atrial stunning compared to the restored left atrial mechanical function. The coagulability of blood was also elevated during atrial stunning. The association between blood stasis and hypercoagulability proposes that assessment of left atrial 4D flow can add to the pathophysiological understanding of thrombus formation during atrial fibrillation related atrial stunning.
  •  
40.
  • Dyverfeldt, Petter, et al. (författare)
  • 4D flow cardiovascular magnetic resonance consensus statement
  • 2015
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BioMed Central / Informa Healthcare. - 1097-6647 .- 1532-429X. ; 17:72
  • Forskningsöversikt (refereegranskat)abstract
    • Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5x1.5x1.5 - 3x3x3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations.
  •  
41.
  • Dyverfeldt, Petter, et al. (författare)
  • Extending 4D Flow Visualization to the Human Right Ventricle
  • 2009
  • Ingår i: Proceedings of International Society for Magnetic Resonance in Medicine: 17th Scientific Meeting 2009. - : International Society for Magnetic Resonance in Medicine. ; , s. 3860-3860
  • Konferensbidrag (refereegranskat)abstract
    • The right ventricle has an important role in cardiovascular disease. However, because of the complex geometry and the sensitivity to the respiratory cycle, imaging of the right ventricle is challenging. We investigated whether 3D cine phase-contrast MRI can provide data with sufficient accuracy for visualizations of the 4D blood flow in the right ventricle. Whole-heart 4D flow measurements with optimized imaging parameters and post-processing tools were made in healthy volunteers. Pathlines emitted from the right atrium could be traced through the right ventricle to the pulmonary artery without leaving the blood pool and thereby met our criteria for sufficient accuracy.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Eriksson, Jonatan, et al. (författare)
  • Left ventricular hemodynamic forces as a marker of mechanical dyssynchrony in heart failure patients with left bundle branch block
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Left bundle branch block (LBBB) causes left ventricular (LV) dyssynchrony which is often associated with heart failure. A significant proportion of heart failure patients do not demonstrate clinical improvement despite cardiac resynchronization therapy (CRT). How LBBB-related effects on LV diastolic function may contribute to those therapeutic failures has not been clarified. We hypothesized that LV hemodynamic forces calculated from 4D flow MRI could serve as a marker of diastolic mechanical dyssynchrony in LBBB hearts. MRI data were acquired in heart failure patients with LBBB or matched patients without LBBB. LV pressure gradients were calculated from the Navier-Stokes equations. Integration of the pressure gradients over the LV volume rendered the hemodynamic forces. The findings demonstrate that the LV filling forces are more orthogonal to the main LV flow direction in heart failure patients with LBBB compared to those without LBBB during early but not late diastole. The greater the conduction abnormality the greater the discordance of LV filling force with the predominant LV flow direction (r(2) = 0.49). Such unique flow-specific measures of mechanical dyssynchrony may serve as an additional tool for considering the risks imposed by conduction abnormalities in heart failure patients and prove to be useful in predicting response to CRT.
  •  
47.
  • Eriksson, Jonatan, et al. (författare)
  • Quantification of presystolic blood flow organization and energetics in the human left ventricle
  • 2011
  • Ingår i: AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY. - : AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA. - 0363-6135 .- 1522-1539. ; 300:6, s. H2135-H2141
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracardiac blood flow patterns are potentially important to cardiac pumping efficiency. However, these complex flow patterns remain incompletely characterized both in health and disease. We hypothesized that normal left ventricular (LV) blood flow patterns would preferentially optimize a portion of the end-diastolic volume (LVEDV) for effective and rapid systolic ejection by virtue of location near and motion towards the LV outflow tract (LVOT). Three-dimensional cine velocity and morphological data were acquired in 12 healthy persons and 1 patient with dilated cardiomyopathy using MRI. A previously validated method was used for analysis in which the LVEDV was separated into four functional flow components based on the bloods locations at the beginning and end of the cardiac cycle. Each components volume, kinetic energy (KE), site, direction, and linear momentum relative to the LVOT were calculated. Of the four components, the LV inflow that passes directly to outflow in a single cardiac cycle (Direct Flow) had the largest volume. At the time of isovolumic contraction, Direct Flow had the greatest amount of KE and the most favorable combination of distance, angle, and linear momentum relative to the LVOT. Atrial contraction boosted the late diastolic KE of the ejected components. We conclude that normal diastolic LV flow creates favorable conditions for ensuing ejection, defined by proximity and energetics, for the Direct Flow, and that atrial contraction augments the end-diastolic KE of the ejection volume. The correlation of Direct Flow characteristics with ejection efficiency might be a relevant investigative target in cardiac failure.
  •  
48.
  • Eriksson, Jonatan, et al. (författare)
  • Semi-automatic quantification of 4D left ventricular blood flow
  • 2010
  • Ingår i: JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE. - 1097-6647. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The beating heart is the generator of blood flow through the cardiovascular system. Within the hearts own chambers, normal complex blood flow patterns can be disturbed by diseases. Methods for the quantification of intra-cardiac blood flow, with its 4D (3D+time) nature, are lacking. We sought to develop and validate a novel semi-automatic analysis approach that integrates flow and morphological data. Method: In six healthy subjects and three patients with dilated cardiomyopathy, three-directional, three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) velocity data and balanced steady-state free-precession long- and short-axis images were acquired. The LV endocardium was segmented from the short-axis images at the times of isovolumetric contraction (IVC) and isovolumetric relaxation (IVR). At the time of IVC, pathlines were emitted from the IVC LV blood volume and traced forwards and backwards in time until IVR, thus including the entire cardiac cycle. The IVR volume was used to determine if and where the pathlines left the LV. This information was used to automatically separate the pathlines into four different components of flow: Direct Flow, Retained Inflow, Delayed Ejection Flow and Residual Volume. Blood volumes were calculated for every component by multiplying the number of pathlines with the blood volume represented by each pathline. The accuracy and inter- and intra-observer reproducibility of the approach were evaluated by analyzing volumes of LV inflow and outflow, the four flow components, and the end-diastolic volume. Results: The volume and distribution of the LV flow components were determined in all subjects. The calculated LV outflow volumes [ml] (67 +/- 13) appeared to fall in between those obtained by through-plane phase-contrast CMR (77 +/- 16) and Doppler ultrasound (58 +/- 10), respectively. Calculated volumes of LV inflow (68 +/- 11) and outflow (67 +/- 13) were well matched (NS). Low inter- and intra-observer variability for the assessment of the volumes of the flow components was obtained. Conclusions: This semi-automatic analysis approach for the quantification of 4D blood flow resulted in accurate LV inflow and outflow volumes and a high reproducibility for the assessment of LV flow components.
  •  
49.
  • Eriksson, Jonatan, et al. (författare)
  • Spatial Heterogeneity of Four-Dimensional Relative Pressure Fields in the Human Left Ventricle
  • 2015
  • Ingår i: Magnetic Resonance in Medicine. - : WILEY-BLACKWELL. - 0740-3194 .- 1522-2594. ; 74:6, s. 1716-1725
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To assess the spatial heterogeneity of the four-dimensional (4D) relative pressure fields in the healthy human left ventricle (LV) and provide reference data for normal LV relative pressure. Methods: Twelve healthy subjects underwent a cardiac MRI examination where 4D flow and morphological data were acquired. The latter data were segmented and used to define the borders of the LV for computation of relative pressure fields using the pressure Poisson equation. The LV lumen was divided into 17 pie-shaped segments. Results: In the normal left ventricle, the relative pressure in the apical segments was significantly higher relative to the basal segments (P < 0.0005) along both the anteroseptal and inferolateral sides after the peaks of early (E-wave) and late (A-wave) diastolic filling. The basal anteroseptal segment showed significantly lower median pressure than the opposite basal inferolateral segment during both E-wave (P < 0.0005) and A-wave (P = 0.0024). Conclusion: Relative pressure in the left ventricle is heterogeneous. During diastole, the main pressure differences in the LV occur along the basal-apical axis. However, pressure differences were also found in the short axis direction and may reflect important aspects of atrioventricular coupling. Additionally, this study provides reference data on LV pressure dynamics for a group of healthy subjects. (C) 2014 Wiley Periodicals, Inc.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 96
Typ av publikation
tidskriftsartikel (74)
konferensbidrag (13)
doktorsavhandling (6)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (79)
övrigt vetenskapligt/konstnärligt (17)
Författare/redaktör
Carlhäll, Carljohan (65)
Ebbers, Tino (44)
Carlhäll, Carljohan, ... (28)
Engvall, Jan (18)
Dyverfeldt, Petter (17)
Bolger, Ann F (15)
visa fler...
Ebbers, Tino, 1972- (14)
Eriksson, Jonatan (13)
Persson, Anders (9)
Lantz, Jonas (8)
Viola, Federica (8)
Henriksson, Lilian (8)
Karlsson, Matts (7)
Bustamante, Mariana (7)
Gupta, Vikas (7)
Karlsson, Lars (6)
Karlsson, Matts, 196 ... (6)
Sigfridsson, Andreas (6)
Dyverfeldt, Petter, ... (6)
Ingels, NB (6)
Miller, DC (6)
Bäck, Sophia (6)
Nguyen, TC (5)
Itoh, A (5)
Itoh, Akinobu (5)
Miller, D. Craig (5)
Cedersund, Gunnar (4)
Neubauer, Stefan (4)
Carlhäll, Carl-Johan (4)
Wigström, Lars, 1967 ... (4)
Bothe, W (4)
Bothe, Wolfgang (4)
Nguyen, Tom C (4)
Ennis, Daniel B (4)
Ingels, Neil B (4)
Ennis, DB (4)
Alehagen, Urban (3)
Lundberg, Peter (3)
Kihlberg, Johan (3)
Engvall, Jan, 1953- (3)
Nylander, Eva, 1951- (3)
Nylander, Eva (3)
Lindström, Lena (3)
Wranne, Bengt, 1940- (3)
Hedman, Kristofer (3)
Bolger, Ann F, 1957- (3)
Heiberg, Einar, 1973 ... (3)
Bolger, A F (3)
Bolger, Ann (3)
Petersson, Sven (3)
visa färre...
Lärosäte
Linköpings universitet (96)
Lunds universitet (5)
Uppsala universitet (3)
Karolinska Institutet (3)
Göteborgs universitet (2)
Umeå universitet (2)
visa fler...
Örebro universitet (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (96)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (47)
Teknik (23)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy