SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carlomagno Brunella) "

Search: WFRF:(Carlomagno Brunella)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Absil, Olivier, et al. (author)
  • An update on the VORTEX project
  • 2015
  • In: Techniques and Instrumentation for Detection of Exoplanets VII. - : SPIE.
  • Conference paper (peer-reviewed)abstract
    • In this talk, we will review the on-going activities within the VORTEX teamat the University of Liège and Uppsala University. The VORTEX project aimsto design, manufacture, test, and exploit vector vortex phase masks madeof sub-wavelength gratings (aka the Annular Groove Phase Mask, AGPM)for the direct detection and characterization of extrasolar planets. This talkwill specifically report on the commissioning of several AGPMs on infraredcameras equipping 10-m class telescopes, including the VLT, the LBT andthe Keck. We will describe the in-lab and on-sky performance of the AGPMs,and discuss first scientific observations. We will also report on the lessonslearned from the on-sky operation of our vortices, and discuss ways toimprove their performance. The potential of our coronagraphic devices inthe context of future extremely large telescopes and space missions will alsobe addressed.
  •  
2.
  •  
3.
  •  
4.
  • Absil, Olivier, et al. (author)
  • The VORTEX project : first results and perspectives
  • 2014
  • In: Adaptive Optics Systems IV. - : SPIE. - 9780819496164
  • Conference paper (peer-reviewed)abstract
    • Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500: 1 in the L band, which translates into a raw contrast of about 6 x 10(-5) at 2 lambda/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0 : 1 0 0). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short-and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images.
  •  
5.
  • Absil, Oliver, et al. (author)
  • Three years of harvest with the vector vortex coronagraph in the thermal infrared
  • 2016
  • In: Ground-Based and Airborne Instrumentation for Astronomy VI. - : SPIE - International Society for Optical Engineering. - 9781510601963 ; , s. 1-14
  • Conference paper (peer-reviewed)abstract
    • For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
  •  
6.
  •  
7.
  • Carlomagno, Brunella, et al. (author)
  • Design and performance simulations of mid-IR AGPMs for ELT/METIS applications
  • 2015
  • Conference paper (peer-reviewed)abstract
    • The direct detection of exoplanets requires the use of dedicated, highcontrast imaging instruments. In this context, vector vortex coronagraphs(VVCs) are considered to be among the most promising solutions to reachhigh contrast at small angular separations. They feature a small innerworking angle (down to 0.9 lambda/D), high throughput, clear off-axis360° discovery space, and are simple to implement. The AGPM (AnnularGroove Phase Mask) is an implementation of the vortex phase mask, whichprovides achromaticity over an appreciable spectral range thanks to the useof sub-wavelength gratings. The grating profile can be optimized based onthe rigorous coupled wave analysis (RCWA) to achieve a quasi-achromaticphase shift up to a very broad band (L+M band: 3.5-5.1μm). These deviceshave been manufactured onto CVD diamond substrates, using reactiveion etching. In this communication, I will first present the latest RCWAConference 9605: Techniques and Instrumentationfor Detection of Exoplanets VIIR eturn to Contents +1 360 676 3290 · help@spie.org 631simulations performed in the L, M and N spectral bands, and for somecombinations of these bands. The resulting optimized AGPMs could beperfectly integrated in the E-ELT/METIS instrument, which aims at detectingand characterizing exoplanets by direct imaging. The target contrast forMETIS is <1e-4 at 2 lambda/D (~40 mas in L band), which translates into apeak rejection rate of few hundreds for the AGPMs. Secondly, the opticalpropagation within the METIS instrument will be studied to determine theperformances of a vortex coronagraph at the focus of METIS. In particular,the effect of the central obstruction, spiders, missing E-ELT segments,and pointing jitter will be analysed, together with the sensitivity to tip-tilt.Finally, the atmosphere and the AO contributions will be considered toobtain more realistic results.
  •  
8.
  • Carlomagno, Brunella, et al. (author)
  • End-to-end simulations of the E-ELT/METIS coronagraphs
  • 2016
  • In: Adaptive Optics Systems V. - : SPIE - International Society for Optical Engineering. ; , s. 1-10
  • Conference paper (peer-reviewed)abstract
    • The direct detection of low-mass planets in the habitable zone of nearby stars is an important science case for future E-ELT instruments such as the mid-infrared imager and spectrograph METIS, which features vortex phase masks and apodizing phase plates (APP) in its baseline design. In this work, we present end-to-end performance simulations, using Fourier propagation, of several METIS coronagraphic modes, including focal-plane vortex phase masks and pupil-plane apodizing phase plates, for the centrally obscured, segmented E-ELT pupil. The atmosphere and the AO contributions are taken into account. Hybrid coronagraphs combining the advantages of vortex phase masks and APPs are considered to improve the METIS coronagraphic performance.
  •  
9.
  • Carlomagno, Brunella, et al. (author)
  • Mid-IR AGPMs for ELT applications
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • The mid-infrared region is well suited for exoplanet detection thanks to the reduced contrast between the planet and its host star with respect to the visible and near-infrared wavelength regimes. This contrast may be further improved with Vector Vortex Coronagraphs (VVCs), which allow us to cancel the starlight. One flavour of the VVC is the AGPM (Annular Groove Phase Mask), which adds the interesting properties of subwavelength gratings (achromaticity, robustness) to the already known properties of the VVC. In this paper, we present the optimized designs, as well as the expected performances of mid-IR AGPMs etched onto synthetic diamond substrates, which are considered for the E-ELT/METIS instrument.
  •  
10.
  • Carlomagno, Brunella, et al. (author)
  • Performance evaluation of mid-IR vortex coronagraphs with centrally obscured segmented pupils
  • 2015
  • Conference paper (peer-reviewed)abstract
    • In its original design, the E-ELT/Metis instrument envisages a vortex coronagraph in the mid-IR regime for detection and characterization of exoplanets, with a contrast of 1e-4 at 2 lambda/D (~40 mas in L band). The AGPM (Annular Groove Phase Mask) is a vortex phase mask with impressive characteristics: small inner working angle, high throughput, achromaticity. A non-perfectly circular pupil and non-flat input wavefront result in a starlight leakage, degrading the performance of the vortex coronagraph. In this work, we present end-to-end performance simulations using Fourier optical propagation to determine the quality of the starlight rejection obtained with an infrared vortex coronagraph. We first analyse the performance facing E-ELT pupil variations (segmentations, central obscuration, spiders, missing segments), then pointing jitter and random adaptive optics residual phase screens are introduced to derive more realistic performance. Finally, more advanced concepts of the infrared vortex coronagraph are presented, in order to compensate for performance degradation.
  •  
11.
  • Castellá, Bruno Femenía, et al. (author)
  • Commissioning and first light results of an L’-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument
  • 2016
  • In: Adaptive Optics Systems V. - : SPIE - International Society for Optical Engineering.
  • Conference paper (peer-reviewed)abstract
    • On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7 mu m. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.
  •  
12.
  •  
13.
  • Delacroix, Christian, et al. (author)
  • A family of subwavelength grating vortexcoronagraphs (SGVCs) with higher topological charge
  • 2015
  • In: Techniques and Instrumentation for Detection of Exoplanets VII. - : SPIE.
  • Conference paper (peer-reviewed)abstract
    • The subwavelength grating vortex coronagraph (SGVC) is a focal-planespiral-like phase mask whose key benefit is to allow high contrast imaging atsmall angles. Directly etched onto a CVD diamond substrate, it is well suitedto perform in the mid-infrared domain. It provides a continuous helicalphase ramp with a dark singularity in its center, and is characterized by itsnumber of phase revolutions, called the topological charge. Over the pasttwo years, we have manufactured several charge-2 SGVCs (a.k.a. annulargroove phase masks) and successfully demonstrated their performanceson 10-m class telescopes (LBT, VLT/NaCo, VLT/VISIR). To prevent stellarleakage on future 30-m class telescopes (E-ELT, TMT, GMT), a broaderoff-axis extinction is required, which can be achieved by increasing thetopological charge. We have recently proposed an original design for acharge-4 SGVC allowing less starlight to leak through the coronagraph, atthe cost of a degraded inner working angle. In this talk, we report on ourlatest development of higher charge SGVCs. From 3D rigorous numericalsimulations using a finite-difference time-domain (FDTD) algorithm, weConference 9605: Techniques and Instrumentationfor Detection of Exoplanets VIIR eturn to Contents +1 360 676 3290 · help@spie.org 647have derived a family of coronagraphs with higher topological charge(SGVC4/6/8). Our new optimization method addresses the principallimitation of such space-variant polarization state manipulation, i.e., theinconvenient discontinuities in the discrete grating pattern. The resultinggratings offer improved precision to the phase modulation compared toprevious designs. Finally, we present our preliminary manufacturing andmetrology results for infrared components down to the K-band.
  •  
14.
  • Delacroix, Christian, et al. (author)
  • Development of a subwavelength grating vortex coronagraph of topological charge 4 (SGVC4)
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • One possible solution to achieve high contrast direct imaging at a small inner working angle (IWA) is to use a vector vortex coronagraph (VVC), which provides a continuous helical phase ramp in the focal plane of the telescope with a phase singularity in its center. Such an optical vortex is characterized by its topological charge, i.e., the number of times the phase accumulates 2 pi radians along a closed path surrounding the singularity. Over the past few years, we have been developing a charge-2 VVC induced by rotationally symmetric subwavelength gratings (SGVC2), also known as the Annular Groove Phase Mask (AGPM). Since 2013, several SGVC2s (or AGPMs) were manufactured using synthetic diamond substrate, then validated on dedicated optical benches, and installed on 10-m class telescopes. Increasing the topological charge seems however mandatory for cancelling the light of bright stars which will be partially resolved by future Extremely Large Telescopes in the near-infrared. In this paper, we first detail our motivations for developing an SGVC4 (charge 4) dedicated to the near-infrared domain. The challenge lies in the design of the pattern which is unrealistic in the theoretically perfect case, due to state-of-the-art manufacturing limitations. Hence, we propose a new realistic design of SGVC4 with minimized discontinuities and optimized phase ramp, showing conclusive improvements over previous works in this field. A preliminary validation of our concept is given based on RCWA simulations, while full 3D finite-difference time-domain simulations (and eventually laboratory tests) will be required for a final validation.
  •  
15.
  •  
16.
  •  
17.
  • Kaeufl, Hans Ulrich, et al. (author)
  • NEAR : New Earths in the Alpha Cen Region (bringing VISIR as a "visiting instrument" to ESO-VLT-UT4)
  • 2018
  • In: Ground-Based And Airborne Instrumentation For Astronomy VII. - : SPIE. - 9781510619586
  • Conference paper (peer-reviewed)abstract
    • ESO in collaboration with the Breakthrough Initiatives, is adding a dedicated coronagraph to the Very Large Telescope mid-IR imager (VISIR) to further boost the high dynamic range imaging capability of this instrument. After the VISIR upgrade in 2012, where coronagraphic masks were first added to VISIR, it became evident that coronagraphy at a ground-based 8m-class telescope, even at wavelengths as long as 10 mu m, critically needs adaptive optics. For VISIR, a work-horse observatory facility instrument in normal operations, this is "easiest" achieved by bringing VISIR as a visiting instrument to the ESO-VLT-UT4 having an adaptive M2. This "visit" enables a meaningful search for Earth-like planets in the habitable zone around both alpha-Cen(1) and alpha-Cen(2). Meaningful here means, achieving a contrast of approximate to 10(-6) within approximate to 0.8 arcsec from the star. Various measures to improve the sensitivity of VISIR will be applied, especially a dedicated filter, faster chopping and a Strehl-ratio close to 100% thanks to extreme adaptive optics. This should allow to detect a planet twice the diameter of Earth in 50 h on source integration time. Key components will be a diffractive coronagraphic mask, the annular groove phase mask (AGPM), optimized for the most sensitive spectral band-pass in the N-band, complemented by a sophisticated apodizer at the level of the Lyot stop. For VISIR noise filtering based on fast chopping is required. A novel internal chopper system will be integrated into the cryostat. This chopper is based on the standard technique from early radio astronomy, conceived by the microwave pioneer Robert Dicke in 1946, which was instrumental for the discovery of the 3K microwave background. For risk mitigation all components are being tested and quali fi ed under realistic conditions in the lab at ESO headquarters before integration into the instrument. The performance or suppression of the coronagraph is so good, that a non-thermal source (vulgo a laser) is needed on the test-bench. We will give an overview of the optical changes to VISIR, the implementation of wave front sensing, the Dicke switch design and laboratory testing, the AGPM design and laboratory testing, non common path error control with a ZELDA mask, sensitivity and contrast estimates, data flow and analysis, the overall project status, plan and outlook Needless to say that this project is of critical interest for future infrared instrumentation at the next generation of extremely large telescopes aiming at surveying the solar neighborhood for terrestrial planets by detecting and characterizing them based on their mid-IR fluxes.
  •  
18.
  •  
19.
  •  
20.
  • Kenworthy, Matthew A., et al. (author)
  • High contrast imaging for the enhanced resolution imager and spectrometer (ERIS)
  • 2018
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510619586
  • Conference paper (peer-reviewed)abstract
    • ERIS is a diffraction limited thermal infrared imager and spectrograph for the Very Large Telescope UT4. One of the science cases for ERIS is the detection and characterization of circumstellar structures and exoplanets around bright stars that are typically much fainter than the stellar diffraction halo. Enhanced sensitivity is provided through the combination of (i) suppression of the diffraction halo of the target star using coronagraphs, and (ii) removal of any residual diffraction structure through focal plane wavefront sensing and subsequent active correction. In this paper we present the two coronagraphs used for diffraction suppression and enabling high contrast imaging in ERIS.
  •  
21.
  • Mawet, Dimitri, et al. (author)
  • Characterization of the inner disk around HD 141569 A from KECK/NIRC2 L-band vortex coronagraphy
  • 2017
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:1, s. 1-10
  • Journal article (peer-reviewed)abstract
    • HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L′ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W. M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ;23 au and up to ;70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L′ band to the H  band (Very Large Telescope/ SPHERE image)  to the visible (Hubble Space Telescope (HST)/ STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 ( at 406 and 245 au, respectively) . We fit our new L′ -band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
  •  
22.
  • Vargas Catalan, Ernesto, et al. (author)
  • Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595:A127, s. 1-8
  • Journal article (peer-reviewed)abstract
    • Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims. We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods. Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results. The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100: 1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000: 1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10 5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions. Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view