SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlsten H) "

Sökning: WFRF:(Carlsten H)

  • Resultat 1-50 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • ER alpha expression in T lymphocytes is dispensable for estrogenic effects in bone
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 238:2, s. 129-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen treatment has positive effects on the skeleton, and we have shown that estrogen receptor alpha (ERa) expression in cells of hematopoietic origin contributes to a normal estrogen treatment response in bone tissue. T lymphocytes are implicated in the estrogenic regulation of bone mass, but it is not known whether T lymphocytes are direct estrogen target cells. Therefore, the aim of this study was to determine the importance of ERa expression in T lymphocytes for the estrogenic regulation of the skeleton using female mice lacking ERa expression specifically in T lymphocytes (Lck-ERa-/-) and ERaflox/flox littermate (control) mice. Deletion of ERa expression in T lymphocytes did not affect bone mineral density (BMD) in sham-operated Lck-ERa-/compared to control mice, and ovariectomy (ovx) resulted in a similar decrease in BMD in control and Lck-ERa-/- mice compared to sham-operated mice. Furthermore, estrogen treatment of ovx Lck-ERa-/- led to an increased BMD that was indistinguishable from the increase seen after estrogen treatment of ovx control mice. Detailed analysis of both the appendicular (femur) and axial (vertebrae) skeleton showed that both trabecular and cortical bone parameters responded to a similar extent regardless of the presence of ERa in T lymphocytes. In conclusion, ERa expression in T lymphocytes is dispensable for normal estrogenic regulation of bone mass in female mice.
  •  
2.
  •  
3.
  • Andersson, Annica, 1983, et al. (författare)
  • Roles of activating functions 1 and 2 of estrogen receptor α in lymphopoiesis.
  • 2018
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 236:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.
  •  
4.
  • Börjesson, Anna E, et al. (författare)
  • SERMs have substance-specific effects on bone, and these effects are mediated via ER alpha AF-1 in female mice
  • 2016
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 310:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)alpha, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ER alpha AF-1 for the estradiol (E-2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ER alpha AF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ER alpha AF-1 (ER alpha AF-1(0)) with E-2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ER alpha AF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ER alpha AF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.
  •  
5.
  • Börjesson, Anna E, et al. (författare)
  • The role of activation functions 1 and 2 of estrogen receptor-alpha for the effects of estradiol and selective estrogen receptor modulators in male mice
  • 2013
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 28:5, s. 1117-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ER had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ER for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERAF-1 (ERAF-10), ERAF-2 (ERAF-20), or the total ER (ER/) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ER/ or ERAF-20 mirx ERAF-10 mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERAF-1 for the effects of SERMs, we treated orx WT and ERAF-10 mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERAF-10 mice. In conclusion, ERAF-2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERAF-1 is tissue-specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERAF-1. Our findings might contribute to the development of bone-specific SERMs in males. (c) 2013 American Society for Bone and Mineral Research.
  •  
6.
  •  
7.
  • Henning, Petra, 1974, et al. (författare)
  • The effect of estrogen on bone requires ER alpha in nonhematopoietic cells but is enhanced by ER alpha in hematopoietic cells
  • 2014
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 307:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of estrogen on bone are mediated mainly via estrogen receptor (ER)alpha. ER alpha in osteoclasts (hematopoietic origin) is involved in the trabecular bone-sparing effects of estrogen, but conflicting data are reported on the role of ER alpha in osteoblast lineage cells (nonhematopoietic origin) for bone metabolism. Because Cre-mediated cell-specific gene inactivation used in previous studies might be confounded by nonspecific and/or incomplete cell-specific ER alpha deletion, we herein used an alternative approach to determine the relative importance of ER alpha in hematopoietic (HC) and nonhematopoietic cells (NHC) for bone mass. Chimeric mice with selective inactivation of ER alpha in HC or NHC were created by bone marrow transplantations of wild-type (WT) and ER alpha-knockout (ER alpha(-/-)) mice. Estradiol treatment increased both trabecular and cortical bone mass in ovariectomized WT/WT (defined as recipient/donor) and WT/ER alpha(-/-) mice but not in ER alpha(-/-)/WT or ER alpha(-/-)/ER alpha(-/-) mice. However, estradiol effects on both bone compartments were reduced (similar to 50%) in WT/ER alpha(-/-) mice compared with WT/WT mice. The effects of estradiol on fat mass and B lymphopoiesis required ER alpha specifically in NHC and HC, respectively. In conclusion, ER alpha in NHC is required for the effects of estrogen on both trabecular and cortical bone, but these effects are enhanced by ER alpha in HC.
  •  
8.
  • Klingberg, E., et al. (författare)
  • Gut dysbiosis in ankylosing spondylitis is associated with increased fecal calprotectin
  • 2018
  • Ingår i: Clinical and Experimental Rheumatology. - : Clinical and Experimental Rheumatology. - 0392-856X .- 1593-098X. ; 36:4, s. 696-696
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction/Aims: Intestinal dysbiosis may be involved in the pathogenesis of ankylosing spondylitis (AS). We aimed to define differences in the gut microbiota composition between patients with AS, ulcerative colitis (UC) and healthy controls (HC) and determine the relations between gut microbiota, fecal calprotectin (FCal) and disease related variables in AS.Methods: Fecal microbiota was analyzed in patients with AS(N=150), UC(N=18) and HC(N=17) using 16S rRNA sequence technique in a targeted approach. Fecal bacterial abundance and profile was also compared with a healthy reference group creating a Dysbiosis Index score (DI 1-5). The AS patients were assessed with questionnaires, back-mobility tests, FCal, ESR and CRP.Results: Principal component analysis showed highly separate clustering of the microbiota in stool samples from patients with AS, UC and HC. We found an expansion of Proteobacteria and a contraction of Bacteroidetes and Lachnospiraceae in AS. Dysbiosis (defined as DI≥3) was found in 88% of AS and an elevated DI correlated with increased FCal (rS=0.303; p<0.001). Samples from AS patients with FCal<50 (n=57) and >200 mg/kg (n=36) clustered separately in multivariate analysis. The patients with a FCal>200 mg/kg had lower abundance of bacteria with anti-inflammatory effects such as Faecalibacterium prausnitzii and Clostridium and higher abundance of various types of Streptococci. No clear association was found between the overall fecal microbiota composition and HLAB-27 status, disease activity, function or medication.Conclusions: The fecal microbiota signature differed greatly between patients with AS, UC and HC. An increased FCal, suggestive of intestinal inflammation, was associated with aberrations in the microbiota composition and increased dysbiosis.
  •  
9.
  •  
10.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 111:3, s. 1180-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Bergström, Beatrice, et al. (författare)
  • Methotrexate inhibits effects of platelet-derived growth factor and interleukin-1β on rheumatoid arthritis fibroblast-like synoviocytes
  • 2018
  • Ingår i: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 20:49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A key feature of joints in rheumatoid arthritis (RA) is the formation of hyperplastic destructive pannus tissue, which is orchestrated by activated fibroblast-like synoviocytes (FLS). We have demonstrated that the RA risk gene and tumor suppressor Limb bud and heart development (LBH) regulates cell cycle progression in FLS. Methotrexate (MTX) is the first-line treatment for RA, but its mechanisms of action remain incompletely understood. Here, we studied the effects of MTX on mitogen-induced FLS proliferation and expression of cell cycle regulators in vitro. Methods: Primary FLS from patients with RA or osteoarthritis were stimulated with the mitogen platelet-derived growth factor (PDGF) and the cytokine interleukin-1β (IL-1β) in the presence or absence of MTX. Cells were then subjected to qPCR for gene expression and cell cycle analysis by flow cytometry. Results: Stimulation with PDGF and IL-1β increased the percentage of FLS in the G2/M phase and shifted the cell morphology to a dendritic shape. These effects were inhibited by MTX. Furthermore, PDGF + IL-1β reduced LBH mRNA expression. However, MTX treatment yielded significantly higher transcript levels of LBH, and of CDKN1A (p21) and TP53 (p53), compared to untreated samples upon mitogen stimulation. The expression of DNA methyltransferase-1 (DNMT1) was also higher in the presence of MTX and there was strong correlation between DNMT1 and LBH expression. Conclusions: Therapeutic concentrations of MTX abolish the effects of PDGF and IL-1β on tumor suppressor expression and inhibit mitogen-promoted FLS proliferation. These data demonstrate novel and important effects of MTX on pathogenic effector cells in the joint, which might involve epigenetic mechanisms. © 2018 The Author(s).
  •  
15.
  • Bergström, Beatrice, et al. (författare)
  • The Rheumatoid Arthritis Risk Gene AIRE Is Induced by Cytokines in Fibroblast-Like Synoviocytes and Augments the Pro-inflammatory Response
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The autoimmune regulator AIRE controls the negative selection of self-reactive T-cells as well as the induction of regulatory T-cells in the thymus by mastering the transcription and presentation of tissue restricted antigens (TRAs) in thymic cells. However, extrathymic AIRE expression of hitherto unknown clinical significance has also been reported. Genetic polymorphisms of AIRE have been associated with rheumatoid arthritis (RA), but no specific disease-mediating mechanism has been identified. Rheumatoid arthritis is characterized by a systemic immune activation and arthritis. Activated fibroblast-like synoviocytes (FLS) are key effector cells, mediating persistent inflammation, and destruction of joints. In this study, we identified AIRE as a cytokine-induced RA risk gene in RA FLS and explored its role in these pathogenic stroma cells. Using RNA interference and RNA sequencing we show that AIRE does not induce TRAs in FLS, but augments the pro-inflammatory response induced by tumor necrosis factor and interleukin-1 beta by promoting the transcription of a set of genes associated with systemic autoimmune disease and annotated as interferon-gamma regulated genes. In particular, AIRE promoted the production and secretion of a set of chemokines, amongst them CXCL10, which have been associated with disease activity in RA. Finally, we demonstrate that AIRE is expressed in podoplanin positive FLS in the lining layer of synovial tissue from RA patients. These findings support a novel pro-inflammatory role of AIRE at peripheral inflammatory sites and provide a potential pathological mechanism for its association with RA.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Deminger, Anna, 1973, et al. (författare)
  • A five-year prospective study of spinal radiographic progression and its predictors in men and women with ankylosing spondylitis
  • 2018
  • Ingår i: Arthritis Research & Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Knowledge about predictors of new spinal bone formation in patients with ankylosing spondylitis (AS) is limited. AS-related spinal alterations are more common in men; however, knowledge of whether predictors differ between sexes is lacking. Our objectives were to study spinal radiographic progression in patients with AS and investigate predictors of progression overall and by sex. Methods: Swedish patients with AS, age (mean +/- SD) 50 +/- 13 years, were included in a longitudinal study. At baseline and at 5-year follow up, spinal radiographs were graded according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS). Predictors were assessed by questionnaires, spinal mobility tests and blood samples. Results: Of 204 patients included, 166 (81%) were re-examined and 54% were men. Men had significantly higher mean mSASSS at baseline and higher mean increase in mSASSS than women (1.9 +/- 2.8 vs. 1.2 +/- 3.3; p = 0.005) More men than women developed new syndesmophytes (30% vs. 12%; p = 0.007). Multivariate logistic regression analyses with progression >= 2 mSASSS units over 5 years or development of new syndesmophytes as the dependent variable showed that presence of baseline AS-related spinal radiographic alterations and obesity (OR 3.78, 95% CI 1.3 to 11.2) were independent predictors of spinal radiographic progression in both sexes. High C-reactive protein (CRP) was a significant predictor in men, with only a trend seen in women. Smoking predicted progression in men whereas high Bath Ankylosing Spondylitis Metrology Index (BASMI) and exposure to bisphosphonates during follow up (OR 4.78, 95% CI 1.1 to 20.1) predicted progression in women. Conclusion: This first report on sex-specific predictors of spinal radiographic progression shows that predictors may partly differ between the sexes. New predictors identified were obesity in both sexes and exposure to bisphosphonates in women. Among previously known predictors, baseline AS-related spinal radiographic alterations predicted radiographic progression in both sexes, high CRP was a predictor in men (with a trend in women) and smoking was a predictor only in men.
  •  
21.
  •  
22.
  • Deminger, Anna, 1973, et al. (författare)
  • Elevated serum level of hepatocyte growth factor predicts development of new syndesmophytes in men with ankylosing spondylitis
  • 2021
  • Ingår i: Rheumatology (Oxford, England). - : Oxford University Press (OUP). - 1462-0332 .- 1462-0324. ; 60:4, s. 1804-1813
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To study baseline serum hepatocyte growth factor (s-HGF) as a predictor of spinal radiographic progression overall and by sex and to analyse factors correlated to changes in s-HGF in patients with AS. METHODS: At baseline and the 5-year follow-up, s-HGF was analysed with ELISA. Spinal radiographs were graded according to modified Stoke Ankylosing Spondylitis Spinal Score. Radiographic progression was defined as ≥2 modified Stoke Ankylosing Spondylitis Spinal Score units/5 years or development of ≥1 syndesmophyte. Logistic regression analyses were used. RESULTS: Of 204 baseline participants, 163 (80%) completed all examinations at the 5-year follow-up (54% men). Baseline s-HGF was significantly higher in men who developed ≥1 syndesmophyte compared with non-progressors, median (interquartile range) baseline s-HGF 1551 (1449-1898) vs 1436 (1200-1569) pg/ml, P = 0.003. The calculated optimal cut-off point for baseline s-HGF ≥1520 pg/ml showed a sensitivity of 70%, a specificity of 69% and univariate odds radio (95% CI) of 5.25 (1.69, 14.10) as predictor of development of ≥1 new syndesmophyte in men. Baseline s-HGF ≥1520 pg/ml remained significantly associated with development of ≥1 new syndesmophyte in men in an analysis adjusted for the baseline variables age, smoking, presence of syndesmophytes and CRP, odds radio 3.97 (1.36, 11.60). In women, no association with HGF and radiographic progression was found. Changes in s-HGF were positively correlated with changes in ESR and CRP. CONCLUSION: In this prospective cohort study elevated s-HGF was shown to be associated with development of new syndesmophytes in men with AS.
  •  
23.
  • Deminger, Anna, 1973, et al. (författare)
  • Factors associated with changes in volumetric bone mineral density and cortical area in men with ankylosing spondylitis : a 5-year prospective study using HRpQCT
  • 2022
  • Ingår i: Osteoporosis International. - : Springer. - 0937-941X .- 1433-2965. ; 33:1, s. 205-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Patients with ankylosing spondylitis (AS) have impaired volumetric bone mineral density (vBMD) assessed with high-resolution peripheral computed tomography (HRpQCT). This first longitudinal HRpQCT study in AS shows that cortical and trabecular vBMD decreased at tibia and that signs of inflammation were associated with cortical bone loss at tibia and radius.Introduction: Patients with ankylosing spondylitis (AS) have reduced volumetric bone mineral density (vBMD) in the peripheral skeleton assessed with high-resolution peripheral quantitative computed tomography (HRpQCT). The aims were to investigate longitudinal changes in vBMD, cortical area, and microarchitecture and to assess factors associated with changes in vBMD and cortical area in men with AS.Methods: HRpQCT of radius and tibia was performed in 54 men with AS at baseline and after 5 years. Univariate and multivariable linear regression analyses were used.Results: At tibia, there were significant decreases exceeding least significant changes (LSC) in cortical and trabecular vBMD, mean (SD) percent change −1.0 (1.9) and −2.7 (5.0) respectively (p<0.001). In multivariable regression analyses, increase in disease activity measured by ASDAS_CRP from baseline to follow-up was associated with decreases in cortical vBMD (β −0.86, 95% CI −1.31 to −0.41) and cortical area (β −1.66, 95% CI −3.21 to −0.10) at tibia. At radius, no changes exceeded LSC. Nonetheless, increase in ASDAS_CRP was associated with decreases in cortical vBMD, and high time-averaged ESR was associated with decreases in cortical area. Treatment with TNF inhibitor ≥ 4 years during follow-up was associated with increases in cortical vBMD and cortical area at tibia, whereas exposure to bisphosphonates was associated with increases in cortical measurements at radius. No disease-related variables or treatments were associated with changes in trabecular vBMD.Conclusion: The findings in this first longitudinal HRpQCT study in patients with AS strengthen the importance of controlling disease activity to maintain bone density in the peripheral skeleton.
  •  
24.
  • Deminger, Anna, et al. (författare)
  • Hepatocyte growth factor is a predictor of development of new syndesmophytes in men with ankylosing spondylitis. A five year prospective study
  • 2019
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ Publishing Group Ltd. - 0003-4967 .- 1468-2060. ; 78, s. 1240-1240
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Patients with ankylosing spondylitis (AS) have an increased risk of spinal new bone formation characterized by the development of syndesmophytes. Knowledge of predictors for development of syndesmophytes is limited. Hepatocyte growth factor (HGF) has regulatory effects on a variety of cells in many different organs. HGF signaling can affect both osteoclast and osteoblast lineages and has been shown to promote osteogenesis. Cross-sectional association between increased HGF and increased modified Stoke Ankylosing Spine Score (mSASSS) has previously been shown [1], whereas knowledge of HGF as a predictor for new bone formation is lacking.Objectives: To study serum HGF as a predictor for development of new syndesmophytes in patients with AS followed for five years.Methods: Serum levels of HGF was analyzed using ELISA in patients with AS (modified NY-criteria) and in healthy controls (HC) at baseline. Spinal lateral radiographs were obtained at baseline and at the 5-year follow-up and assessed for development of new syndesmophytes using mSASSS. Univariate and multivariable logistic regression analyses were used to assess predictors for development of ≥ 1 new syndesmophyte.Results: Serum HGF and radiographs at baseline and follow-up were available for 163 patients, 88 men and 75 women, baseline mean age 50±12 years. AS patients had higher serum HGF than HC (n=80), p=0.050. In the AS group, 36 patients (22%) developed ≥ 1 syndesmophyte, 27 men and 9 women. In the total AS group, neither did baseline serum HGF differ between those who developed ≥ 1 new syndesmophyte and those who did not progress, nor did it predict development of ≥ 1 new syndesmophyte in the univariate analysis, p=0.25. Interestingly, men who developed ≥1 new syndesmophyte had higher serum HGF than the non-progressors (1706±454 vs 1420±338 pg/mL, p=0.001) and increased serum HGF at baseline predicted development of ≥ 1 syndesmophyte (OR per 1 SD HGF 2.39, 95% CI 1.31 to 4.36) in the univariate analysis. Serum HGF did not predict new syndesmophytes in women, p=0.13. Multivariable analysis for men including age, smoking, baseline syndesmophyte and serum HGF showed high HGF (OR per 1SD 1.90, 95% CI 1.01 to 3.59) and ≥1 baseline syndesmophyte (OR 3.48, 95% CI 1.09 to 11.07) to independently predict development of ≥ 1 new syndesmophyte. If baseline CRP was included in the multivariable model, serum HGF and baseline syndesmophytes remained the significant predictors.Conclusion: High baseline serum HGF was shown to independently predict the development of at least one new syndesmophyte over five years in men with AS.
  •  
25.
  • Deminger, Anna, 1973, et al. (författare)
  • Which measuring site in ankylosing spondylitis is best to detect bone loss and what predicts the decline : results from a 5-year prospective study
  • 2017
  • Ingår i: Arthritis Research & Therapy. - London, United,Kingdom : BioMed Central. - 1478-6362. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Studies have shown increased prevalence of osteoporosis and increased risk for vertebral fractures in patients with ankylosing spondylitis (AS). Measurements of bone mineral density (BMD) in the lumbar spine anterior-posterior (AP) projection may be difficult to interpret due to the ligamentous calcifications, and the lateral projection might be a better measuring site. Our objectives were to investigate BMD changes after 5 years at different measuring sites in patients with AS and to evaluate disease-related variables and medications as predictors for BMD changes.METHODS: In a longitudinal study, BMD in Swedish AS patients, 50 ± 13 years old, was measured with dual-energy x-ray absorptiometry (DXA) at the hip, the lumbar spine AP and lateral projections, and the total radius at baseline and after 5 years. Patients were assessed with questionnaires, blood samples, and spinal radiographs for grading of AS-related alterations in the spine with the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) and assessment of vertebral fractures by the Genant score. Multiple linear regression analyses were used to investigate predictors for BMD changes.RESULTS: Of 204 patients included at baseline, 168 (82%) were re-examined after 5 years (92 men and 76 women). BMD decreased significantly at the femoral neck and radius and increased significantly at the lumbar spine, both for AP and lateral projections. Mean C-reactive protein during follow-up predicted a decrease in the femoral neck BMD (change in %, β = -0.15, p = 0.046). Use of bisphosphonates predicted an increase in BMD at all measuring sites (p < 0.001 to 0.013), except for the total radius. Use of tumor necrosis factor inhibitors (TNFi) predicted an increase in AP spinal BMD (β = 3.15, p = 0.012).CONCLUSION: The current study (which has a long follow-up, many measuring sites, and is the first to longitudinally assess the lateral projection of the spine in AS patients) surprisingly showed that lateral projection spinal BMD increased. This study suggests that the best site to assess bone loss in AS patients is the femoral neck and that inflammation has an adverse effect, and the use of bisphosphonates and TNFi has a positive effect, on BMD in AS patients.
  •  
26.
  • Engdahl, Cecilia, 1983, et al. (författare)
  • Amelioration of collagen-induced arthritis and immune-associated bone loss through signaling via estrogen receptor alpha, and not estrogen receptor beta or G protein-coupled receptor 30.
  • 2010
  • Ingår i: Arthritis and rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 62:2, s. 524-33
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The effects of estrogen may be exerted via the nuclear estrogen receptors (ERs) ERalpha or ERbeta or via the recently proposed transmembrane estrogen receptor G protein-coupled receptor 30 (GPR-30). The purpose of this study was to elucidate the ER specificity for the ameliorating effects of estrogen on arthritis and bone loss in a model of postmenopausal rheumatoid arthritis (RA). METHODS: Female DBA/1 mice underwent ovariectomy or sham operation, and type II collagen-induced arthritis was induced. Mice were treated subcutaneously 5 days/week with the specific agonists propylpyrazoletriol (PPT; for ERalpha), diarylpropionitrile (DPN; for ERbeta), G1 (for GPR-30), or with a physiologic dose of estradiol. Clinical arthritis scores were determined continuously. At termination of the study, bone mineral density (BMD) was analyzed, paws were collected for histologic assessment, serum was analyzed for cytokines and markers of bone and cartilage turnover, and bone marrow was subjected to fluorescence-activated cell sorting. RESULTS: Treatment with PPT as well as estradiol dramatically decreased the frequency and severity of arthritis. Furthermore, estradiol and PPT treatment resulted in preservation of bone and cartilage, as demonstrated by increased BMD and decreased serum levels of bone resorption markers and cartilage degradation markers, whereas no effect was seen after DPN or G1 treatment. CONCLUSION: In a well-established model of postmenopausal RA, ERalpha, but not ERbeta or GPR-30 signaling, was shown to ameliorate the disease and the associated development of osteoporosis. Since long-term treatment with estrogen has been associated with significant side effects, increased knowledge about the mechanisms behind the beneficial effects of estrogen is useful in the search for novel treatments of postmenopausal RA.
  •  
27.
  • Enqvist, M., et al. (författare)
  • Coordinated expression of DNAM-1 and LFA-1 in educated NK cells
  • 2015
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 194:9, s. 4518-4527
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional capacity of NK cells is dynamically tuned by integrated signals from inhibitory and activating cell surface receptors in a process termed NK cell education. However, the understanding of the cellular and molecular mechanisms behind this functional tuning is limited. In this study, we show that the expression of the adhesion molecule and activation receptor DNAX accessory molecule 1 (DNAM-1) correlates with the quantity and quality of the inhibitory input by HLA class I-specific killer cell Ig-like receptors and CD94/NKG2A as well as with the magnitude of functional responses. Upon target cell recognition, the conformational state of LFA-1 changed in educated NK cells, associated with rapid colocalization of both active LFA-1 and DNAM-1 at the immune synapse. Thus, the coordinated expression of LFA-1 and DNAM-1 is a central component of NK cell education and provides a potential mechanism for controlling cytotoxicity by functionally mature NK cells.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  • Klingberg, Eva, et al. (författare)
  • Weight loss improves disease activity in patients with psoriatic arthritis and obesity: an interventional study
  • 2019
  • Ingår i: Arthritis Res Ther. - : Springer Science and Business Media LLC. - 1478-6354. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundObesity is over-represented in patients with psoriatic arthritis (PsA) and associated with higher disease activity, poorer effect of treatment and increased cardiovascular morbidity. Studies on the effects of weight loss are however needed. This study aimed to prospectively study the effects of weight loss treatment with very low energy diet (VLED) on disease activity in patients with PsA (CASPAR criteria) and obesity (body mass index BMI 33kg/m(2)).MethodsVLED (640kcal/day) was taken during 12-16weeks, depending on pre-treatment BMI. Afterwards, an energy-restricted diet was gradually reintroduced. Weight loss treatment was given within a structured framework for support and medical follow-up.Treatment with conventional synthetic and/or biologic disease-modifying anti-rheumatic drugs was held constant from 3months before, until 6months after baseline.Patients were assessed with BMI, 66/68 joints count, Leeds enthesitis index, psoriasis body surface area (BSA), questionnaires and CRP at baseline, 3 and 6months. Primary outcome was the percentage of patients reaching minimal disease activity (MDA) and secondary outcomes were reaching Psoriatic Arthritis Response Criteria (PsARC) and American College of Rheumatology (ACR) response criteria.ResultsTotally 41/46 patients completed the study, 63% women, median age 54years (IQR 48-62). At baseline increased BMI was associated with higher disease activity and poorer function.The median weight loss was 18.7kg (IQR 14.6-26.5) or 18.6% (IQR 14.7-26.3) of the baseline weight. A majority of the disease activity parameters improved significantly after weight loss, including 68/66 tender/swollen joints count, CRP, BSA, Leeds enthesitis index, HAQ and patient VAS for global health, pain and fatigue. A larger weight loss resulted in more improvement in a dose-response manner. The percentage of patients with MDA increased from 29 to 54%, (p=0.002). PsARC was reached by 46.3%. The ACR 20, 50 and 70 responses were 51.2%, 34.1% and 7.3% respectively.ConclusionsShort-term weight loss treatment with VLED was associated with significant positive effects on disease activity in joints, entheses and skin in patients with PsA and obesity. The study supports the hypothesis of obesity as a promotor of disease activity in PsA.Trial registrationClinicalTrials.gov identifier: NCT02917434, registered on September 21, 2016retrospectively registered
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • Lindberg, Marie K, 1975, et al. (författare)
  • Estrogen receptor alpha, but not estrogen receptor beta, is involved in the regulation of the OPG/RANKL (osteoprotegerin/receptor activator of NF-kappa B ligand) ratio and serum interleukin-6 in male mice.
  • 2001
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 171:3, s. 425-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important for the male skeleton. Osteoprotegerin (OPG), receptor activator of NF-kappa B ligand (RANKL), interleukin-6 (IL-6), IL-1 and tumor necrosis factor alpha (TNFalpha) have been suggested to be involved in the skeletal effects of estrogen. We treated orchidectomized mice with estradiol for 2 weeks and observed a 143% increase in the trabecular bone mineral density of the distal metaphysis of femur that was associated with a decreased OPG/RANKL mRNA ratio in vertebral bone. A similar decreased OPG/RANKL ratio was also seen after estrogen treatment of ovariectomized female mice. The effect of estrogen receptor (ER) inactivation on the OPG/RANKL ratio was dissected by using intact male mice lacking ER alpha (ERKO), ER beta (BERKO) or both receptors (DERKO). The expression of OPG was increased in ERKO and DERKO but not in BERKO male mice, resulting in an increased OPG/RANKL ratio. Furthermore, serum levels of IL-6 and tartrate-resistant acid phosphatase 5b (TRAP 5b) were decreased in ERKO and DERKO, but not in BERKO male mice. These results demonstrate that ER alpha, but not ER beta, is involved in the regulation of the vertebral OPG/RANKL ratio, serum levels of IL-6 and TRAP 5b in male mice.
  •  
44.
  • Lindberg, Marie K, 1975, et al. (författare)
  • Estrogen receptor specificity for the effects of estrogen in ovariectomized mice.
  • 2002
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 174:2, s. 167-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), alpha and beta. Three-month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 micro g/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERalpha activity or represent an ERalpha/ERbeta-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERalpha mediated.
  •  
45.
  • Merrien, Magali, et al. (författare)
  • Clinical and biological impact of SAMHD1 expression in mantle cell lymphoma
  • 2022
  • Ingår i: Virchows Archiv. - : Springer Science and Business Media LLC. - 0945-6317 .- 1432-2307. ; 480:3, s. 655-666
  • Tidskriftsartikel (refereegranskat)abstract
    • SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that restricts viral replication in infected cells and limits the sensitivity to cytarabine by hydrolysing its active metabolite, as recently shown in acute myeloid leukemia. Cytarabine is an essential component in the Nordic mantle cell lymphoma protocols (MCL2 and MCL3) for induction and high-dose chemotherapy treatment before autologous stem cell transplantation for younger patients with mantle cell lymphoma (MCL). We here investigated the expression of SAMHD1 in a population-based cohort of MCL (N = 150). SAMHD1 was highly variably expressed in MCL (range, 0.4% to 100% of positive tumor cells). Cases with blastoid/pleomorphic morphology had higher SAMHD1 expression (P = 0.028) and SAMHD1 was also correlated to tumor cell proliferation (P = 0.016). SAMHD1 expression showed moderate correlation to the expression of the transcriptional regulator SOX11 (P = 0.036) but genetic silencing of SOX11 and SAMHD1 by siRNA in MCL cell lines did not suggest mutual regulation. We hypothesized that expression of SAMHD1 could predict short time to progression in patients treated with Cytarabine as part of high-dose chemotherapy. Despite the correlation with known biological adverse prognostic factors, neither low or high SAMHD1 expression correlated to PFS or OS in patients treated according to the Nordic MCL2 or MCL3 protocols (N = 158).
  •  
46.
  •  
47.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Estrogen receptor-α expression in neuronal cells affects bone mass.
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:3, s. 983-988
  • Tidskriftsartikel (refereegranskat)abstract
    • It has generally been assumed that bone mass is controlled by endocrine mechanisms and the local bone environment. Recent findings demonstrate that central pathways are involved in the regulation of bone mass. Estrogen is involved in the regulation of bone homeostasis and the CNS is also a target for estrogen actions. The aim of this study was to investigate in vivo the role of central estrogen receptor-α (ERα) expression for bone mass. Nestin-Cre mice were crossed with ERα(flox) mice to generate mice lacking ERα expression specifically in nervous tissue (nestin-ERα(-/-)). Bone mineral density was increased in both the trabecular and cortical bone compartments in nestin-ERα(-/-) mice compared with controls. Femoral bone strength was increased in nestin-ERα(-/-) mice, as demonstrated by increased stiffness and maximal load of failure. The high bone mass phenotype in nestin-ERα(-/-) mice was mainly caused by increased bone formation. Serum leptin levels were elevated as a result of increased leptin expression in white adipose tissue (WAT) and slightly increased amount of WAT in nestin-ERα(-/-) mice. Leptin receptor mRNA levels were reduced in the hypothalamus but not in bone. In conclusion, inactivation of central ERα signaling results in increased bone mass, demonstrating that the balance between peripheral stimulatory and central inhibitory ERα actions is important for the regulation of bone mass. We propose that the increased bone mass in nestin-ERα(-/-) mice is mediated via decreased central leptin sensitivity and thereby increased secretion of leptin from WAT, which, in turn, results in increased peripheral leptin-induced bone formation.
  •  
48.
  •  
49.
  •  
50.
  • Sehic, Edina, et al. (författare)
  • Immunoglobulin G complexes without sialic acids enhance osteoclastogenesis but do not affect arthritis-mediated bone loss.
  • 2021
  • Ingår i: Scandinavian journal of immunology. - : Wiley. - 1365-3083 .- 0300-9475. ; 93:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunoglobulin G (IgG) is important in clearance and recognition of previously presented antigens and after activation, IgGs can interact with the Fc gamma receptors (FcγRs) on hematopoietic cells, including bone-resorbing osteoclasts. The pathogenicity of IgG, i.e. the ability to elicit stimulatory effects via FcγRs, can be modulated by attachment of sugar moieties, including sialic acids. Human IgGs and autoantibodies are associated with bone loss in autoimmune disease. However, the impact of polyclonal murine IgG via FcγRs on bone loss is poorly understood. Here, we investigate if heat-aggregated activated murine polyclonal IgG complexes have any direct effects on murine osteoclasts and if they modulate arthritis-mediated bone loss. Using cell cultures of murine osteoclasts, we show that IgG complexes without sialic acids (de-IgG complexes) enhance receptor activator of nuclear factor kappa-Β ligand (RANKL)-stimulated osteoclastogenesis, an effect associated with increased FcγRIII expression. Using an in vivo model of arthritis-mediated bone loss, where IgG complexes were injected into arthritic knees, no effect on the severity of arthritis or the degree of arthritis-mediated bone loss was detected. Interestingly, injection of de-IgG complexes into non-arthritic knees increased osteoclast formation and enhanced bone erosions. Our findings show that activated de-IgG complexes have no additive effect on arthritis-mediated bone loss. However, de-IgG complexes potentiate murine osteoclastogenesis and enhance local bone erosion in non-arthritic bones, further confirming the link between the adaptive immune system and bone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 53

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy