SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Casares N) "

Sökning: WFRF:(Casares N)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Mirchandani-Duque, M, et al. (författare)
  • Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of hippocampal neurogenesis is linked to several neurodegenereative diseases, where boosting hippocampal neurogenesis in these patients emerges as a potential therapeutic approach. Accumulating evidence for a neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the role of the NPY and GAL interaction in the neurogenic actions on the dorsal hippocampus. We studied the Y1R agonist and GAL effects on: hippocampal cell proliferation through the proliferating cell nuclear antigen (PCNA), the expression of neuroprotective and anti-apoptotic factors, and the survival of neurons and neurite outgrowth on hippocampal neuronal cells. The functional outcome was evaluated in the object-in-place task. We demonstrated that the Y1R agonist and GAL promote cell proliferation and the induction of neuroprotective factors. These effects were mediated by the interaction of NPYY1 (Y1R) and GAL2 (GALR2) receptors, which mediate the increased survival and neurites’ outgrowth observed on neuronal hippocampal cells. These cellular effects are linked to the improved spatial-memory effects after the Y1R agonist and GAL co-injection at 24 h in the object-in-place task. Our results suggest the development of heterobivalent agonist pharmacophores, targeting Y1R–GALR2 heterocomplexes, therefore acting on the neuronal precursor cells of the DG in the dorsal hippocampus for the novel therapy of neurodegenerative cognitive-affecting diseases.
  •  
10.
  • Rodriguez-Losada, N, et al. (författare)
  • Graphene Oxide and Reduced Derivatives, as Powder or Film Scaffolds, Differentially Promote Dopaminergic Neuron Differentiation and Survival
  • 2020
  • Ingår i: Frontiers in neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 14, s. 570409-
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging scaffold structures made of carbon nanomaterials, such as graphene oxide (GO) have shown efficient bioconjugation with common biomolecules. Previous studies described that GO promotes the differentiation of neural stem cells and may be useful for neural regeneration. In this study, we examined the capacity of GO, full reduced (FRGO), and partially reduced (PRGO) powder and film to support survival, proliferation, differentiation, maturation, and bioenergetic function of a dopaminergic (DA) cell line derived from the mouse substantia nigra (SN4741). Our results show that the morphology of the film and the species of graphene (GO, PRGO, or FRGO) influences the behavior and function of these neurons. In general, we found better biocompatibility of the film species than that of the powder. Analysis of cell viability and cytotoxicity showed good cell survival, a lack of cell death in all GO forms and its derivatives, a decreased proliferation, and increased differentiation over time. Neuronal maturation of SN4741 in all GO forms, and its derivatives were assessed by increased protein levels of tyrosine hydroxylase (TH), dopamine transporter (DAT), the glutamate inward rectifying potassium channel 2 (GIRK2), and of synaptic proteins, such as synaptobrevin and synaptophysin. Notably, PRGO-film increased the levels of Tuj1 and the expression of transcription factors specific for midbrain DA neurons, such as Pitx3, Lmx1a, and Lmx1b. Bioenergetics and mitochondrial dysfunction were evaluated by measuring oxygen consumption modified by distinct GO species and were different between powder and film for the same GO species. Our results indicate that PRGO-film was the best GO species at maintaining mitochondrial function compared to control. Finally, different GO forms, and particularly PRGO-film was also found to prevent the loss of DA cells and the decrease of the α-synuclein (α-syn) in a molecular environment where oxidative stress has been induced to model Parkinson's disease. In conclusion, PRGO-film is the most efficient graphene species at promoting DA differentiation and preventing DA cell loss, thus becoming a suitable scaffold to test new drugs or develop constructs for Parkinson's disease cell replacement therapy.
  •  
11.
  •  
12.
  • White, Helen E., et al. (författare)
  • Standardization of molecular monitoring of CML : results and recommendations from the European treatment and outcome study
  • 2022
  • Ingår i: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:7, s. 1834-1842
  • Tidskriftsartikel (refereegranskat)abstract
    • Standardized monitoring of BCR::ABL1 mRNA levels is essential for the management of chronic myeloid leukemia (CML) patients. From 2016 to 2021 the European Treatment and Outcome Study for CML (EUTOS) explored the use of secondary, lyophilized cell-based BCR::ABL1 reference panels traceable to the World Health Organization primary reference material to standardize and validate local laboratory tests. Panels were used to assign and validate conversion factors (CFs) to the International Scale and assess the ability of laboratories to assess deep molecular response (DMR). The study also explored aspects of internal quality control. The percentage of EUTOS reference laboratories (n = 50) with CFs validated as optimal or satisfactory increased from 67.5% to 97.6% and 36.4% to 91.7% for ABL1 and GUSB, respectively, during the study period and 98% of laboratories were able to detect MR4.5 in most samples. Laboratories with unvalidated CFs had a higher coefficient of variation for BCR::ABL1(IS) and some laboratories had a limit of blank greater than zero which could affect the accurate reporting of DMR. Our study indicates that secondary reference panels can be used effectively to obtain and validate CFs in a manner equivalent to sample exchange and can also be used to monitor additional aspects of quality assurance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy