SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cashman Kevin D.) "

Sökning: WFRF:(Cashman Kevin D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cashman, Kevin D., et al. (författare)
  • Individual participant data (IPD)-level meta-analysis of randomised controlled trials to estimate the vitamin D dietary requirements in dark-skinned individuals resident at high latitude
  • 2022
  • Ingår i: European Journal of Nutrition. - : Springer. - 1436-6207 .- 1436-6215. ; 61, s. 1015-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • Context and purpose: There is an urgent need to develop vitamin D dietary recommendations for dark-skinned populations resident at high latitude. Using data from randomised controlled trials (RCTs) with vitamin D3-supplements/fortified foods, we undertook an individual participant data-level meta-regression (IPD) analysis of the response of wintertime serum 25-hydroxyvitamin (25(OH)D) to total vitamin D intake among dark-skinned children and adults residing at ≥ 40° N and derived dietary requirement values for vitamin D.Methods: IPD analysis using data from 677 dark-skinned participants (of Black or South Asian descent; ages 5–86 years) in 10 RCTs with vitamin D supplements/fortified foods identified via a systematic review and predefined eligibility criteria. Outcome measures were vitamin D intake estimates across a range of 25(OH)D thresholds.Results: To maintain serum 25(OH)D concentrations ≥ 25 and 30 nmol/L in 97.5% of individuals, 23.9 and 27.3 µg/day of vitamin D, respectively, were required among South Asian and 24.1 and 33.2 µg/day, respectively, among Black participants. Overall, our age-stratified intake estimates did not exceed age-specific Tolerable Upper Intake Levels for vitamin D. The vitamin D intake required by dark-skinned individuals to maintain 97.5% of winter 25(OH)D concentrations ≥ 50 nmol/L was 66.8 µg/day. This intake predicted that the upper 2.5% of individuals could potentially achieve serum 25(OH)D concentrations ≥ 158 nmol/L, which has been linked to potential adverse effects in older adults in supplementation studies.Conclusions: Our IPD-derived vitamin D intakes required to maintain 97.5% of winter 25(OH)D concentrations ≥ 25, 30 and 50 nmol/L are substantially higher than the equivalent estimates for White individuals. These requirement estimates are also higher than those currently recommended internationally by several agencies, which are based predominantly on data from Whites and derived from standard meta-regression based on aggregate data. Much more work is needed in dark-skinned populations both in the dose–response relationship and risk characterisation for health outcomes.
  •  
2.
  • Cashman, Kevin D., et al. (författare)
  • Individual participant data (IPD)-level meta-analysis of randomised controlled trials with vitamin D-fortified foods to estimate Dietary Reference Values for vitamin D
  • 2021
  • Ingår i: European Journal of Nutrition. - : Springer Berlin/Heidelberg. - 1436-6207 .- 1436-6215. ; 60:2, s. 939-959
  • Tidskriftsartikel (refereegranskat)abstract
    • Context and purpose: Individual participant data-level meta-regression (IPD) analysis is superior to meta-regression based on aggregate data in determining Dietary Reference Values (DRV) for vitamin D. Using data from randomized controlled trials (RCTs) with vitamin D3-fortified foods, we undertook an IPD analysis of the response of winter serum 25-hydroxyvitamin (25(OH)D) to total vitamin D intake among children and adults and derived DRV for vitamin D.Methods: IPD analysis using data from 1429 participants (ages 2–89 years) in 11 RCTs with vitamin D-fortified foods identified via a systematic review and predefined eligibility criteria. Outcome measures were vitamin D DRV estimates across a range of serum 25(OH)D thresholds using unadjusted and adjusted models.Results: Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of winter 25(OH)D concentrations ≥ 25 and ≥ 30 nmol/L are 6 and 12 µg/day, respectively (unadjusted model). The intake estimates to maintain 90%, 95% and 97.5% of concentrations ≥ 50 nmol/L are 33.4, 57.5 and 92.3 µg/day, respectively (unadjusted) and 17.0, 28.1 and 43.6 µg/day, respectively (adjusted for mean values for baseline serum 25(OH)D, age and BMI).Conclusions: IPD-derived vitamin D intakes required to maintain 90%, 95% and 97.5% of winter 25(OH)D concentrations ≥ 50 nmol/L are much higher than those derived from standard meta-regression based on aggregate data, due to the inability of the latter to capture between person-variability. Our IPD provides further evidence that using food-based approaches to achieve an intake of 12 µg/day could prevent vitamin D deficiency (i.e., serum 25(OH)D < 30 nmol/L) in the general population.
  •  
3.
  • Joost, Hans-Georg, et al. (författare)
  • Personalised nutrition : status and perspectives
  • 2007
  • Ingår i: British Journal of Nutrition. - 1475-2662. ; 98:01, s. 26-31
  • Forskningsöversikt (refereegranskat)abstract
    • Personalised, genotype-based nutrition is a concept that links genotyping with specific nutritional advice in order to improve the prevention of nutrition-associated, chronic diseases. This review describes the current scientific basis of the concept and discusses its problems. There is convincing evidence that variant genes may indeed determine the biological response to nutrients. The effects of single-gene variants on risk or risk factor levels of a complex disease are, however, usually small and sometimes inconsistent. Thus, information on the effects of combinations of relevant gene variants appears to be required in order to improve the predictive precision of the genetic information. Furthermore, very few associations between genotype and response have been tested for causality in human intervention studies, and little is known about potential adverse effects of a genotype-derived intervention. These issues need to be addressed before genotyping can become an acceptable method to guide nutritional recommendations.
  •  
4.
  • Santoro, Aurelia, et al. (författare)
  • A Cross-Sectional Analysis of Body Composition Among Healthy Elderly From the European NU-AGE Study : Sex and Country Specific Features
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media S.A.. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Body composition (BC) is an emerging important factor for the characterization of metabolic status. The assessment of BC has been studied in various populations and diseases such as obesity, diabetes, endocrine diseases as well as physiological and paraphysiological conditions such as growth and aging processes, and physical training. A gold standard technique for the assessment of human BC at molecular level is represented by dual-energy X-ray absorptiometry (DXA), which is able to precisely assess the body mass (and areal bone mineral density-aBMD) on a regional and whole-body basis. For the first time, within the framework of the NU-AGE project, BC has been assessed by means of a whole-body DXA scan in 1121 sex-balanced free-living, apparently healthy older adults aged 65-79 years enrolled in 5 European countries (Italy, France, United Kingdom, Netherlands, and Poland). The aim of this analysis is to provide a complete profile of BC in healthy elderly participants from five European countries and to investigate country- and sex-related differences by state-of-the-art DXA technology. To compare BC data collected in different centers, specific indexes and ratios have been used. Non-parametric statistical tests showed sex-specific significant differences in certain BC parameters. In particular, women have higher fat mass (FM) (Fat/Lean mass ratio: by 67%, p < 2.2e-16) and lower lean mass (Lean Mass index: by -18%, p < 2.2e-16) than men. On the other hand, men have higher android FM than women (Android/gynoid FM ratio: by 56%, p < 2.2e-16). Interesting differences also emerged among countries. Polish elderly have higher FM (Fat/Lean mass ratio: by 52%, p < 2.2e-16) and lower lean mass (Skeletal Mass index: by -23%, p < 2.2e-16) than elderly from the other four countries. At variance, French elderly show lower FM (Fat/Lean mass ratio: by -34%, p < 2.2e-16) and higher lean mass (Skeletal Mass index: by 18%, p < 2.2e-16). Moreover, five BC profiles in women and six in men have been identified by a cluster analysis based on BC parameters. Finally, these data can serve as reference for normative average and variability of BC in the elderly populations across Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy