SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Casslén Vera) "

Sökning: WFRF:(Casslén Vera)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Casslén, Vera, et al. (författare)
  • Histamine uptake by human endometrial cells expressing the organic cation transporter EMT and the vesicular monoamine transporter-2
  • 2006
  • Ingår i: Molecular Human Reproduction. - : Oxford University Press (OUP). - 1460-2407 .- 1360-9947. ; 12:8, s. 483-489
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular reuptake of monoamines, which is mediated by cell membrane transporters, is followed by accumulation in vesicles by vesicular monoamine transporters (VMAT). The aim of this study was to demonstrate the presence of functional monoamine transporters with high affinity for histamine in human endometrial tissue, since histamine has been implicated as a paracrine signal during endometrial decidualization and embryo implantation. In situ hybridization with S-35-labelled cRNA probes was used for detection of the organic cationic transporter-2 (OCT-2), the extraneuronal monoamine transporter (EMT), and VMAT-2 in cryosections of normal human endometrial tissue. To identify functional transporters for histamine in endometrial cells, we incubated primary cultures of stromal cells and cultures of attached glands with H-3-labelled histamine. Cultures were pretreated with either corticosterone, a specific inhibitor of EMT, or reserpine, a specific inhibitor of VMAT-2. EMT mRNA was localized in the stroma with peak expression in the secretory phase, whereas OCT-2 mRNA was expressed by few cells in the stroma throughout the cycle. VMAT-2 mRNA was localized in the stroma during the proliferative phase and in the epithelium during the secretory phase. Thus, EMT and VMAT-2, which both have high affinity for histamine, are strongly expressed in endometrial cells. Both corticosterone and reserpine significantly reduced the uptake of H-3-histamine in stromal cells during the proliferative as well as the secretory phase. This indicates the presence of functional EMT and VMAT-2 transporter proteins throughout the cycle, even though their periods of maximal mRNA expression were limited. The results of uptake experiments with glandular epithelial cells confirmed not only the presence of functional VMAT-2 transporter protein in the secretory phase but also the absence of a histamine-specific plasma membrane transporter throughout the cycle. Thus, endometrial tissue contains both plasma membrane and vesicular membrane monoamine transporters with high affinity for histamine. They can potentially influence the reproductive process by the uptake of extracellular histamine and subsequent release on demand.
  •  
3.
  • Casslén, Vera, et al. (författare)
  • Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms.
  • 2009
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 1095-6859 .- 0090-8258. ; 115, s. 121-126
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Expression of uPA mRNA is massively up-regulated in the stroma of poorly differentiated ovarian tumors. We hypothesized that this expression was induced by paracrine signals from the epithelial tumor cells, and established an in vitro model of ovarian cancer microenvironment to study intercellular cross-talk. METHODS: ES-2 clear cell carcinoma cells were grown in tissue culture inserts in a double-chamber system with fibroblastic stromal LEP cells embedded in Matrigel. Binding-site directed antibodies were used to neutralize soluble cytokines in ES-2 conditioned medium (CM) before incubation with LEP cells. Real time PCR measured uPA mRNA in LEP cells, as well as mRNA for cytokines in both cell types. RESULTS: Co-culture with ES-2 cells as well as incubation with ES-2 CM induced uPA mRNA in LEP cells about two-fold. In short time (12 h) incubation of LEP cells with CM, antibodies to EGF and bFGF reduced induction of uPA mRNA, suggesting that these cytokines function as paracrine signals. EGF mRNA and bFGF mRNA were also found in ES-2 cells. At longer incubation (24 h) antibodies to bFGF, HB-EGF, HGF, IGF-1, and IL-1alpha reduced uPA mRNA induction, suggesting an autocrine function for these cytokines in LEP cells. In fact, expression of the same five cytokines was up-regulated in LEP cells exposed to CM. CONCLUSION: We identified two cytokines as paracrine signals, and five cytokines as autocrine signals in ovarian cancer cell induced up-regulation of uPA mRNA in stromal fibroblastic cells. It is crucial to understand intra-tumoral cross-talk, since it can offer new therapeutic approaches.
  •  
4.
  • Hansson, Stefan R, et al. (författare)
  • Monoamine transporters in human endometrium and decidua.
  • 2009
  • Ingår i: Human Reproduction Update. - : Oxford University Press (OUP). - 1355-4786 .- 1460-2369. ; 2008:Nov 5, s. 249-260
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Monoamines play important roles in decidualization, implantation, immune modulation and inflammation. Furthermore, monoamines are potent vasoactive mediators that regulate blood flow and capillary permeability. Regulation of the uterine blood flow is important both during menstruation and pregnancy. Adequate monoamine concentrations are essential for a proper implantation and physiological development of pregnancy. Unlike most transmitter substances, monoamines are recycled by monoamine transporters rather than enzymatically inactivated. Their intracellular fate is influenced by their lower affinity for inactivating enzymes than for vesicular transporters located in intracellular vesicles. Thus, cells are capable not only of recapturizing and degrading monoamines, but also of storing and releasing them in a controlled fashion. METHODS The general objective of the present review is to summarize the role of the monoamine transporters in the female human reproduction. Since the transporter proteins critically regulate extracellular monoamine concentrations, knowledge of their distribution and cyclic variation is of great importance for a deeper understanding of the contribution of monoaminergic mechanisms in the reproductive process. MEDLINE was searched for relevant publications from 1950 to 2007. RESULTS Two families of monoamine transporters, neuronal and extraneuronal monoamine transporters, are present in the human endometrium and deciduas. CONCLUSIONS New knowledge about monoamine metabolism in the endometrium during menstruation and pregnancy will increase understanding of infertility problems and may offer new pharmacological approaches to optimize assisted reproduction.
  •  
5.
  • Henic, Emir, et al. (författare)
  • Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells.
  • 2009
  • Ingår i: International Journal of Gynecological Cancer. - 1048-891X. ; 19:2, s. 214-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.
  •  
6.
  • Kolkova, Zuzana, et al. (författare)
  • G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua.
  • 2010
  • Ingår i: Molecular Human Reproduction. - : Oxford University Press (OUP). - 1460-2407 .- 1360-9947. ; 16:10, s. 743-751
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focusses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, Western blotting, in situ hybridization, and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase , and even lower in the decidua. The expression pattern was similar to that of ERalpha mRNA, but different from that of ERss mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid and late proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at midcycle as well as decidualization and blastocyst implantation in the mid-secretory phase.
  •  
7.
  • Kolkova, Zuzana, et al. (författare)
  • The G protein-coupled estrogen receptor 1 (GPER/GPR30) does not predict survival in patients with ovarian cancer
  • 2012
  • Ingår i: Journal of Ovarian Research. - : Springer Science and Business Media LLC. - 1757-2215. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Even though ovarian tumors are not generally considered estrogen-sensitive, estrogens may still have an impact on ovarian tumor progression. The recently identified trans-membrane estrogen receptor GPER is involved in rapid estrogen signaling. Furthermore, it binds selective estrogen receptor modulators with agonistic effect, which could explain tamoxifen controversies. Methods: GPER mRNA was assayed with quantitative real-time PCR (qPCR) in 42 primary ovarian tumors and 7 ovarian cancer cell lines. ER alpha and ER beta mRNA were analyzed for comparison. GPER protein was semi-quantified with densitometric scanning of Western blots and its tissue distribution analyzed with immunohistochemistry (IHC) in 40 ovarian tumors. In addition, IHC was evaluated in a tissue microarray (TMA) of 150 primary malignant ovarian tumors. Results: All tumor samples contained GPER mRNA. The content of mRNA was not different between benign and malignant tumors, but one third of malignant samples over-expressed GPER mRNA. The content of ER alpha mRNA was higher in malignant than in benign tumors, whereas ER beta mRNA was higher in benign than in malignant tumors. GPER mRNA was detected in all seven ovarian cancer cell lines with highest levels in TOV21G and TOV112D cells. Similar expression pattern was seen for ER beta mRNA. Western blot demonstrated GPER protein in all tumor samples. Semi-quantification showed no difference between benign and malignant tumors, but about one third of malignant samples over-expressed GPER protein. GPER staining was localized mainly in epithelial cells. In the TMA study we found no correlation between GPER staining and clinical stage, histological grade or patient survival. Conclusions: GPER mRNA as well as GPER protein is present in both benign and malignant ovarian tumor tissue. About one third of malignant tumors over-expressed both GPER mRNA and protein. This, however, correlated neither with histological or clinical parameters nor with patient survival.
  •  
8.
  •  
9.
  •  
10.
  • Edström-Hägerwall, Anneli, et al. (författare)
  • Alpha-1-microglobulin protects from heme induced placenta and kidney damage in a pregnant ewe model for preeclampsia
  • 2013
  • Ingår i: Pregnancy Hypertension. - : Elsevier BV. - 2210-7789. ; 3:2, s. 1-70
  • Konferensbidrag (refereegranskat)abstract
    • INTRODUCTION: Previous gene expression analysis have identified fetal hemoglobin (HbF) as a plausible etiological factor in preeclampsia. Free hemoglobin and its degradation products, e.g. heme, are known to cause oxidative stress, tissue damage, and vaso-constriction, typical findings in preeclampsia.OBJECTIVE: To study alpha-1-microglobulin (A1M), an endogenous radical scavenger and heme-binder, as a potential treatment for preeclampsia using the pregnant ewe preeclampsia model. Free Hb and heme are known to take part in the pathology of this model and therefor well suited for evaluation of recombinant A1M as a therapy.METHODS: 11 pregnant ewes, at gestational age 125-131 days, were acclimatized for 36h and then starved for another 36h to induce preeclampsia symptoms. At the end of starvation period, they were treated either with placebo (n=6) or A1M injections (n=5). After injections, food was re-introduced and ewes further followed for 72h. The ewes were sacrificed the 6th day after beginning of acclimatization. Throughout the 6 days, the animals were monitored for blood pressure and different blood and urine parameters. Whole blood, kidney and placenta tissue samples were collected from the ewes. Gene expression analysis, blood analysis, histology and electron microscopy were used to evaluate the therapeutic effects of A1M.RESULTS: Starvation increased the amount of free heme in the blood. The ultrastructure of the placenta and kidney were damaged in a way similar to what previously have been described for PE. The glomeruli and the tubuli were damaged which was reflected by increased Ficol clearance and increased plasma creatinine levels. Treatment with A1M significantly normalized the kidney functions. The most profound changes on gene expression level were found in white blood cells in the starved animals. Starvation decreases mRNA expression for anti-oxidants such as CAT (P=0.04), SOD1 (P=0.008), SOD2 (1.8-fold) as well as angiogenetic factors such as VEGF (P=0.02) and HGF (1.6-fold). A1M treatment rescued the decreased expression of SOD2 (P=0.04) and HGF (2-fold).CONCLUSION: A1M is well tolerated and shows high potential as a treatment for PE-like symptoms in the pregnant ewe model for PE.
  •  
11.
  • Nääv, Åsa, et al. (författare)
  • A1M Ameliorates Preeclampsia-Like Symptoms in Placenta and Kidney Induced by Cell-Free Fetal Hemoglobin in Rabbit.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Preeclampsia is one of the most serious pregnancy-related diseases and clinically manifests as hypertension and proteinuria after 20 gestational weeks. The worldwide prevalence is 3-8% of pregnancies, making it the most common cause of maternal and fetal morbidity and mortality. Preeclampsia lacks an effective therapy, and the only "cure" is delivery. We have previously shown that increased synthesis and accumulation of cell-free fetal hemoglobin (HbF) in the placenta is important in the pathophysiology of preeclampsia. Extracellular hemoglobin (Hb) and its metabolites induce oxidative stress, which may lead to acute renal failure and vascular dysfunction seen in preeclampsia. The human endogenous protein, α1-microglobulin (A1M), removes cell-free heme-groups and induces natural tissue repair mechanisms. Exogenously administered A1M has been shown to alleviate the effects of Hb-induced oxidative stress in rat kidneys. Here we attempted to establish an animal model mimicking the human symptoms at stage two of preeclampsia by administering species-specific cell-free HbF starting mid-gestation until term, and evaluated the therapeutic effect of A1M on the induced symptoms. Female pregnant rabbits received HbF infusions i.v. with or without A1M every second day from gestational day 20. The HbF-infused animals developed proteinuria and a significantly increased glomerular sieving coefficient in kidney that was ameliorated by co-administration of A1M. Transmission electron microscopy analysis of kidney and placenta showed both intracellular and extracellular tissue damages after HbF-treatment, while A1M co-administration resulted in a significant reduction of the structural and cellular changes. Neither of the HbF-treated animals displayed any changes in blood pressure during pregnancy. In conclusion, infusion of cell-free HbF in the pregnant rabbits induced tissue damage and organ failure similar to those seen in preeclampsia, and was restored by co-administration of A1M. This study provides preclinical evidence supporting further examination of A1M as a potential new therapy for preeclampsia.
  •  
12.
  • Wester Rosenlöf, Lena, et al. (författare)
  • A1M/α1-Microglobulin Protects from Heme-Induced Placental and Renal Damage in a Pregnant Sheep Model of Preeclampsia.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Preeclampsia (PE) is a serious pregnancy complication that manifests as hypertension and proteinuria after the 20(th) gestation week. Previously, fetal hemoglobin (HbF) has been identified as a plausible causative factor. Cell-free Hb and its degradation products are known to cause oxidative stress and tissue damage, typical of the PE placenta. A1M (α1-microglobulin) is an endogenous scavenger of radicals and heme. Here, the usefulness of A1M as a treatment for PE is investigated in the pregnant ewe PE model, in which starvation induces PE symptoms via hemolysis. Eleven ewes, in late pregnancy, were starved for 36 hours and then treated with A1M (n = 5) or placebo (n = 6) injections. After injections, the ewes were re-fed and observed for additional 72 hours. They were monitored for blood pressure, proteinuria, blood cell distribution and clinical and inflammation markers in plasma. Before termination, the utero-placental circulation was analyzed with Doppler velocimetry and the kidney glomerular function was analyzed by Ficoll sieving. At termination, blood, kidney and placenta samples were collected and analyzed for changes in gene expression and tissue structure. The starvation resulted in increased amounts of the hemolysis marker bilirubin in the blood, structural damages to the placenta and kidneys and an increased glomerular sieving coefficient indicating a defect filtration barrier. Treatment with A1M ameliorated these changes without signs of side-effects. In conclusion, A1M displayed positive therapeutic effects in the ewe starvation PE model, and was well tolerated. Therefore, we suggest A1M as a plausible treatment for PE in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy