SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Castillo Luisa E.) "

Sökning: WFRF:(Castillo Luisa E.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Aad, G., et al. (författare)
  • The ATLAS Simulation Infrastructure
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 823-874
  • Tidskriftsartikel (refereegranskat)abstract
    • The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.
  •  
4.
  • Aad, G., et al. (författare)
  • Commissioning of the ATLAS Muon Spectrometer with cosmic rays
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 875-916
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.
  •  
5.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
6.
  •  
7.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
8.
  • Diepens, Noel J., et al. (författare)
  • Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica
  • 2014
  • Ingår i: Journal of environmental biology. - 0254-8704. ; 35:1 (SI), s. 73-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Current knowledge on fate and effect of agricultural pesticides comes is mainly from temperate ecosystems. More studies are needed in tropical systems in order to assess contamination risks to non-target endemic tropical species from the extensive use of pesticides e.g. in banana and pineapple plantations. In this study, acute laboratory toxicity tests with organophosphate pesticides ethoprophos and chlorpyrifos were conducted on two Costa Rican species, cladoceran Daphnia ambigua and fish Parachromis dovii. Tests showed that chlorpyrifos was more toxic than ethoprophos to D. ambigua and P. dovii and that D. ambigua was also more sensitive than P. dovii to both pesticides. Additionally, bioassays were performed by exposing D. magna and P. dovii to contaminated water collected from the field. Chemical analyses of field water revealed that fungicides were generally the most frequent pesticide group found, followed by insecticides/nematicides and herbicides. The bioassays and values obtained from the literature confirmed that D. magna was more sensitive to pesticide contamination than P. dovii and that D. ambigua was more sensitive than D. magna, suggesting that the native cladoceran is a more suitable test species than its temperate counterpart. Species sensitivity distributions showed no significant difference in sensitivity between tropical and temperate fish and the arthropod species exposed to chlorpyrifos in this study. Choline esterase activity (ChE) was measured in P. dovii in laboratory tests in order to assess the applicability of this biomarker. ChE inhibition in P. dovii was observed in the laboratory at levels below the LC10 of both ethoprophos and chlorpyrifos, confirming that ChE is an efficient biomarker of exposure. Both indigenous Costa Rican species used in this study were found to be suitable standard tropical test species. Further studies are needed to investigate how protective the safe environmental concentrations, derived from LC50 of native tropical species, are for protecting tropical aquatic natural communities.
  •  
9.
  • Echeverría-Sáenz, Silvia, et al. (författare)
  • In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica
  • 2018
  • Ingår i: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 25:14, s. 13270-13282
  • Tidskriftsartikel (refereegranskat)abstract
    • The River Madre de Dios (RMD) and its lagoon is a biodiversity rich watershed formed by a system of streams, rivers, channels, and a coastal lagoon communicating with the Caribbean Sea. This basin sustains a large area of agricultural activity (mostly banana, rice, and pineapple) with intensive use of pesticides, continually detected in water samples. We investigated in situ the toxicological effects caused by pesticide runoff from agriculture and the relation of pesticide concentrations with different biological organization levels: early responses in fish biomarkers (sub-organismal), acute toxicity to Daphnia magna (organismal), and aquatic macroinvertebrate community structure. The evaluation was carried out between October 2011 and November 2012 at five sites along the RMD influenced by agricultural discharges and a reference site in a stream outside the RMD that receives less pesticides. Acute toxicity to D. magna was observed only once in a sample from the RMD (Cano Azul); the index of biomaiker responses in fish exposed in situ was higher than controls at the same site and at the RMD-Freeman. However, only macroinvertebrates were statistically related to the presence of pesticides, combined with both physical-chemical parameters and habitat degradation. All three groups of variables determined the distribution of macroinvertebrate taxa through the study sites.
  •  
10.
  • Rämö, Robert A., et al. (författare)
  • Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models
  • 2018
  • Ingår i: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 25:14, s. 13254-13269
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assesses the ecological risks (ERA) of pesticides to aquatic organisms in the River Madre de Dios (RMD), which receives surface runoff water from banana, pineapple, and rice plantations on the Caribbean coast of Costa Rica. Water samples collected over 2 years at five sites in the RMD revealed a total of 26 pesticides. Their toxicity risk to aquatic organisms was assessed using three recent ERA models. (1) The PERPEST model showed a high probability (>50 %) of clear toxic effects of pesticide mixtures on algae, macrophytes, zooplankton, macroinvertebrates, and community metabolism and a low probability (<50 %) of clear effects on fish. (2) Species sensitivity distributions (SSD) showed a moderate to high risk of three herbicides: ametryn, bromacil, diuron and four insecticides: carbaryl, diazinon, ethoprophos, terbufos. (3) The multi-substance potentially affected fraction (msPAF) model showed results consistent with PERPEST: high risk to algae (maximum msPAF: 73 %), aquatic plants (61 %), and arthropods (25 %) and low risk to fish (0.2 %) from pesticide mixtures. The pesticides posing the highest risks according to msPAF and that should be substituted with less toxic substances were the herbicides ametryn, diuron, the insecticides carbaryl, chlorpyrifos, diazinon, ethoprophos, and the fungicide difenoconazole. Ecological risks were highest near the plantations and decreased progressively further downstream. The risk to fish was found to be relatively low in these models, but water samples were not collected during fish kill events and some highly toxic pesticides known to be used were not analyzed for in this study. Further sampling and analysis of water samples is needed to determine toxicity risks to fish during peaks of pesticide mixture concentrations. The msPAF model, which estimates the ecological risks of mixtures based on their toxic modes of action, was found to be the most suitable model to assess toxicity risks to aquatic organisms in the RMD. The PERPEST model was found to be a strong tool for screening risk assessments. The SSD approach is useful in deriving water quality criteria for specific pesticides. This study, through the application of three ERA models, clearly shows that pesticides used in plantations within the RMD watershed are expected to have severe adverse effects on most groups of aquatic organisms and that actions are urgently needed to reduce pesticide pollution in this high biodiversity ecosystem.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy