SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cayrel R.) "

Sökning: WFRF:(Cayrel R.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caffau, E., et al. (författare)
  • The photospheric solar oxygen project - I. Abundance analysis of atomic lines and influence of atmospheric models
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 488:3, s. 1031-1046
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The solar oxygen abundance has undergone a major downward revision in the past decade, the most noticeable one being the update including 3D hydrodynamical simulations to model the solar photosphere. Up to now, such an analysis has only been carried out by one group using one radiation-hydrodynamics code. Aims. We investigate the photospheric oxygen abundance considering lines from atomic transitions. We also consider the relationship between the solar model used and the resulting solar oxygen abundance, to understand whether the downward abundance revision is specifically related to 3D hydrodynamical effects. Methods. We performed a new determination of the solar photospheric oxygen abundance by analysing different high-resolution high signal-to-noise ratio atlases of the solar flux and disc-centre intensity, making use of the latest generation of CO5BOLD 3D solar model atmospheres. Results. We find 8.73 <= log (N-O/N-H) + 12 <= 8.79. The lower and upper values represent extreme assumptions on the role of collisional excitation and ionisation by neutral hydrogen for the NLTE level populations of neutral oxygen. The error of our analysis is +/- (0.04 +/- 0.03) dex, the last being related to NLTE corrections, the first error to any other effect. The 3D "granulation effects" do not play a decisive role in lowering the oxygen abundance. Conclusions. Our recommended value is log (N-O/N-H) = 8.76 +/- 0.07, considering our present ignorance of the role of collisions with hydrogen atoms on the NLTE level populations of oxygen. The reasons for lower O abundances in the past are identified as (1) the lower equivalent widths adopted and (2) the choice of neglecting collisions with hydrogen atoms in the statistical equilibrium calculations for oxygen.
  •  
2.
  • Bonifacio, P., et al. (författare)
  • First stars XII. Abundances in extremely metal-poor turnoff stars, and comparison with the giants
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 501:2, s. 519-530
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
  •  
3.
  • Bonifacio, P., et al. (författare)
  • Using CO5BOLD models to predict the effects of granulation on colours .
  • 2017
  • Ingår i: MEMORIE della Società Astronomica Italiana. - 0037-8720 .- 1824-016X. ; 88
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract.In order to investigate the effects of granulation on fluxes and colours, we computedthe emerging fluxes from the models in theCO5BOLDgrid with metallicities [M/H]=0.0,–1.0,–2.0 and –3.0. These fluxes have been used to compute colours in different photometric systems.We explain here how our computations have been performed and provide some results.Key words.Convection – Hydrodynamics - Stars: atmosphere
  •  
4.
  • Bonifacio, P., et al. (författare)
  • Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours : I. Grids of 3D corrections in the UBVRI, 2MASS, HIPPARCOS, Gaia, and SDSS systems
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The atmospheres of cool stars are temporally and spatially inhomogeneous due to the effects of convection. The influence of this inhomogeneity, referred to as granulation, on colours has never been investigated over a large range of effective temperatures and gravities.Aim. We aim to study, in a quantitative way, the impact of granulation on colours.Methods. We use the CIFIST (Cosmological Impact of the FIrst Stars) grid of CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions, L = 2, 3) hydrodynamical models to compute emerging fluxes. These in turn are used to compute theoretical colours in the UBV RI, 2MASS, HIPPARCOS, Gaia and SDSS systems. Every CO5BOLD model has a corresponding one dimensional (1D) plane-parallel LHD (Lagrangian HydroDynamics) model computed for the same atmospheric parameters, which we used to define a “3D correction” that can be applied to colours computed from fluxes computed from any 1D model atmosphere code. As an example, we illustrate these corrections applied to colours computed from ATLAS models.Results. The 3D corrections on colours are generally small, of the order of a few hundredths of a magnitude, yet they are far from negligible. We find that ignoring granulation effects can lead to underestimation of Teff by up to 200 K and overestimation of gravity by up to 0.5 dex, when using colours as diagnostics. We have identified a major shortcoming in how scattering is treated in the current version of the CIFIST grid, which could lead to offsets of the order 0.01 mag, especially for colours involving blue and UV bands. We have investigated the Gaia and HIPPARCOS photometric systems and found that the (G − Hp), (BP − RP) diagram is immune to the effects of granulation. In addition, we point to the potential of the RVS photometry as a metallicity diagnostic.Conclusions. Our investigation shows that the effects of granulation should not be neglected if one wants to use colours as diagnostics of the stellar parameters of F, G, K stars. A limitation is that scattering is treated as true absorption in our current computations, thus our 3D corrections are likely an upper limit to the true effect. We are already computing the next generation of the CIFIST grid, using an approximate treatment of scattering.
  •  
5.
  • Cayrel, R., et al. (författare)
  • Determination of [O/Fe] in BD +23 3130 from ESO VLT-UVES observations
  • 2001
  • Ingår i: New Astronomy Reviews. - 1872-9630. ; 45:8, s. 533-535
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new determination of [O/Fe, the relative logarithmicabundance of O/Fe with respect to the Sun, for the very metal-poor starBD+23 3130 ([Fe/H=-2.6). The value was derived from the forbidden line[O I at 630 nm and from six weak Fe II lines, with a S/N ratiosubstantially larger than those obtained before, thanks to theefficiency of the VLT-UVES instrument at Paranal. We obtain[O/Fe=0.71+/-0.25, a value 0.36 dex higher than the value obtained fromthe same lines by Fulbright and Kraft [AJ 118 (1999) 527, but 0.46lower than the one derived by Israelian et al. [ApJ 507 (1998) 805 fromthe UV OH bands.
  •  
6.
  •  
7.
  • Cayrel, R., et al. (författare)
  • First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 416:3, s. 1117-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the ESO Large Programme ``First Stars'', veryhigh-quality spectra of some 70 very metal-poor dwarfs and giants wereobtained with the ESO VLT and UVES spectrograph. These stars are likelyto have descended from the first generation(s) of stars formed after theBig Bang, and their detailed composition provides constraints on issuessuch as the nature of the first supernovae, the efficiency of mixingprocesses in the early Galaxy, the formation and evolution of the haloof the Galaxy, and the possible sources of reionization of the Universe.This paper presents the abundance analysis of an homogeneous sample of35 giants selected from the HK survey of Beers et al. (cite{BPS92},cite{Be99}), emphasizing stars of extremely low metallicity: 30 of our35 stars are in the range -4.1 <[Fe/H]< -2.7, and 22 stars have[Fe/H] < -3.0. Our new VLT/UVES spectra, at a resolving power ofR∼45 000 and with signal-to-noise ratios of 100-200 per pixel overthe wavelength range 330-1000 nm, are greatly superior to those of theclassic studies of McWilliam et al. (cite{MPS95}) and Ryan et al.(cite{RNB96}).The immediate objective of the work is to determine precise,comprehensive, and homogeneous element abundances for this large sampleof the most metal-poor giants presently known. In the analysis wecombine the spectral line modeling code ``Turbospectrum'' with OSMARCSmodel atmospheres, which treat continuum scattering correctly and thusallow proper interpretation of the blue regions of the spectra, wherescattering becomes important relative to continuous absorption (λ< 400 nm). We obtain detailed information on the trends of elementalabundance ratios and the star-to-star scatter around those trends,enabling us to separate the relative contributions of cosmic scatter andobservational/analysis errors.Abundances of 17 elements from C to Zn have been measured in all stars,including K and Zn, which have not previously been detected in starswith [Fe/H] < -3.0. Among the key results, we discuss the oxygenabundance (from the forbidden [OI] line), the different and sometimescomplex trends of the abundance ratios with metallicity, the very tightrelationship between the abundances of certain elements (e.g., Fe andCr), and the high [Zn/Fe] ratio in the most metal-poor stars. Within theerror bars, the trends of the abundance ratios with metallicity areconsistent with those found in earlier literature, but in many cases thescatter around the average trends is much smaller than found in earlierstudies, which were limited to lower-quality spectra. We find that thecosmic scatter in several element ratios may be as low as 0.05 dex.The evolution of the abundance trends and scatter with decliningmetallicity provides strong constraints on the yields of the firstsupernovae and their mixing into the early ISM. The abundance ratiosfound in our sample do not match the predicted yields frompair-instability hypernovae, but are consistent with element productionby supernovae with progenitor masses up to 100 M⊙.Moreover, the composition of the ejecta that have enriched the matterBased on observations obtained in the frame of the ESO programme ID165.N-0276(A).Full Tables 3 and 8 are available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/1117 This work hasmade use of the SIMBAD database.
  •  
8.
  • Cayrel, R., et al. (författare)
  • Measurement of stellar age from uranium decay
  • 2001
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 409:6821, s. 691-692
  • Tidskriftsartikel (refereegranskat)abstract
    • The ages of the oldest stars in the Galaxy indicate when star formationbegan, and provide a minimum age for the Universe. Radioactive dating ofmeteoritic material and stars relies on comparing the present abundanceratios of radioactive and stable nuclear species to the theoreticallypredicted ratios of their production. The radioisotope 232Th(half-life 14Gyr) has been used to date Galactic stars, but it decays byonly a factor of two over the lifetime of the Universe. 238U(half-life 4.5Gyr) is in principle a more precise age indicator, buteven its strongest spectral line, from singly ionized uranium at awavelength of 385.957nm, has previously not been detected in stars. Herewe report a measurement of this line in the very metal-poor starCS31082-0018, a star which is strongly overabundant in itsheavy elements. The derived uranium abundance, log(U/H) = -13.7 +/- 0.14+/- 0.12 yields an age of 12.5 +/- 3Gyr, though this is still modeldependent. The observation of this cosmochronometer gives the mostdirect age determination of the Galaxy. Also, with improved theoreticaland laboratory data, it will provide a highly precise lower limit to theage of the Universe.
  •  
9.
  • Depagne, E., et al. (författare)
  • First Stars. II. Elemental abundances in the extremely metal-poor star CS 22949--037. A diagnostic of early massive supernovae
  • 2002
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 390:1, s. 187-198
  • Tidskriftsartikel (refereegranskat)abstract
    • CS 22949-037 is one of the most metal-poor giants known ([Fe/H]~-4.0),and it exhibits large overabundances of carbon and nitrogen (Norris etal.). Using VLT-UVES spectra of unprecedented quality, regardingresolution and S/N ratio, covering a wide wavelength range (from lambda= 350 to 900 nm), we have determined abundances for 21 elements in thisstar over a wide range of atomic mass. The major new discovery is anexceptionally large oxygen enhancement, [O/Fe] = 1.97+/-0.1, as measuredfrom the [O I] line at 630.0 nm. We find an enhancement of [N/Fe] of2.56+/- 0.2, and a milder one of [C/Fe] = 1.17+/-0.1, similar to thosealready reported in the literature. This implies Zstar =0.01Zsun. We also find carbon isotopic ratios12C/13C =4+/-2.0 and 13C/14N=0.03 +0.035-0.015, close to the equilibrium valueof the CN cycle. Lithium is not detected. Na is strongly enhanced([Na/Fe] = +2.1 +/- 0.2), while S and K are not detected. Thesilicon-burning elements Cr and Mn are underabundant, while Co and Znare overabundant ([Zn/Fe]=+0.7). Zn is measured for the first time insuch an extremely metal-poor star. The abundances of the neutron-captureelements Sr, Y, and Ba are strongly decreasing with the atomic number ofthe element: [Sr/Fe] ~ +0.3, [Y/Fe] ~ -0.1, and [Ba/Fe] ~ -0.6. Amongpossible progenitors of CS 22949-037, we discuss the pair-instabilitysupernovae. Such very massive objects indeed produce large amounts ofoxygen, and have been found to be possible sources of primary nitrogen.However, the predicted odd/even effect is too large, and the predictedZn abundance much too low. Other scenarios are also discussed. Inparticular, the yields of a recent model (Z35Z) from Heger and Woosleyare shown to be in fair agreement with the observations. The onlydiscrepant prediction is the very low abundance of nitrogen, possiblycurable by taking into account other effects such as rotationallyinduced mixing. Alternatively, the absence of lithium in our star, andthe values of the isotopic ratios 12C/13C and13C/14N close to the equilibrium value of the CNcycle, suggest that the CNO abundances now observed might have beenaltered by nuclear processing in the star itself. A 30-40Msun supernova, with fallback, seems the most likelyprogenitor for CS 22949-037. Based on observations made with the ESOVery Large Telescope at Paranal Observatory, Chile (programme ID165.N-0276(A)).
  •  
10.
  • François, P., et al. (författare)
  • First Stars. III. A detailed elemental abundance study of four extremely metal-poor giant stars
  • 2003
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 403:3, s. 1105-1114
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports detailed abundance analyses for four extremelymetal-poor (XMP) giant stars with [Fe/H]<-3.8, based onhigh-resolution, high-S/N spectra from the ESO VLT (Kueyen/UVES) and LTEmodel atmosphere calculations. The derived [alpha /Fe] ratios in oursample exhibit a small dispersion, confirming previous findings in theliterature, i.e. a constant overabundance of the alpha -elements with avery small (if any) dependence on [Fe/H]. In particular, the very smallscatter we determine for [Si/Fe] suggests that this element shows aconstant overabundance at very low metallicity, a conclusion which couldnot have been derived from the widely scattered [Si/Fe] values reportedin the literature for less metal-poor stars. For the iron-peak elements,our precise abundances for the four XMP stars in our sample confirm thedecreasing trend of Cr and Mn with decreasing [Fe/H], as well as theincreasing trend for Co and the absence of any trend for Sc and Ni. Incontrast to the significant spread of the ratios [Sr/Fe] and [Ba/Fe], wefind [Sr/Ba] in our sample to be roughly solar, with a much lowerdispersion than previously found for stars in the range -3.5 < [Fe/H]< -2.5.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (Large Programme ID 165.N-0276(A)).The complete version of Table 5 is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp:/ /cdsweb.u-strasbg.fr/cgi-bin/qcat?J /A+A/403/1105
  •  
11.
  • Hill, V., et al. (författare)
  • First stars. I. The extreme r-element rich, iron-poor halo giant CS31082-001. Implications for the r--process site(s) and radioactive cosmochronology
  • 2002
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 387:2, s. 560-579
  • Forskningsöversikt (refereegranskat)abstract
    • We present a high-resolution ( R= 75 000, S/ N ) spectroscopic analysis of the bright ( V= 11.7), extreme halo giant CS 31082-001([Fe/H] = -2.9), obtained in an ESO-VLT Large Programme dedicated to very metal-poor stars. We find CS 31082-001 to be extremely rich in r-process elements, comparable in this respect only to the similarly metal-poor, but carbon-enriched, giant CS 22892-052. As a result of the extreme overabundance of the heaviest r-process elements, and negligible blending from CH and CN molecular lines, a reliable measurement is obtained of the U II line at 386 nm, for the first time in a halo star, along with numerous lines of Th II, as well as lines of 25 other r-process elements. Abundance estimates for a total of 43 elements (44 counting Hydrogen) are reported in CS 31082-001, almost half of the entire periodic table. The main atmospheric parameters of CS 31082-001 are as follows: K, (cgs), [Fe/H] = -2.9 (in LTE), and microturbulence 1.8 0.2 km s -1. Carbon and nitrogen are not significantly enhanced relative to iron. As usual in giant stars, Li is depleted by dilution ( (Li/H) = 0.85). The -elements show the usual enhancements with respect to iron, with [O/Fe] (from [O I] 6300 Å), [Mg/Fe] , [Si/Fe] , and [Ca/Fe] , while [Al/Fe] is near -0.5. The r-process elements show unusual patterns: among the lightest elements ( 40), Sr and Zr follow the Solar r-element distribution, but Ag is down by 0.8 dex. All elements with 56 Z 72 follow the Solar r-element pattern, reduced by about 1.25 dex. Accordingly, the [ r/Fe] enhancement is about +1.7 dex (a factor of 50), very similar to that of CS 22892-052. Pb, in contrast, seems to be below the shifted Solar r-process distribution, possibly indicating an error in the latter, while thorium is more enhanced than the lighter nuclides. In CS 31082-001, log(Th/Eu) is , higher than in the Solar System (-0.46) or in CS 22892-052 (-0.66). If CS 31082-001 and CS 22892-052 have similar ages, as expected for two extreme halo stars, this implies that the production ratios were different by about 0.4 dex for the two objects. Conversely, if the Th/Eu production ratio were universal, an age of 15 Gyr for CS 22892-052 would imply a negative age for CS 31082-001. Thus, while a universal production ratio for the r-process elements seems to hold in the interval 56 Z 72, it breaks down in the actinide region. When available, the U/Th is thus preferable to Th/Eu for radioactive dating, for two reasons: (i) because of its faster decay rate and smaller sensitivity to observational errors, and (ii) because the inital production ratio of the neighboring nuclides 238U and 232Th is more robustly predicted than the 151Eu/ 232Th ratio. Our current best estimate for the age of CS 31082-001 is Gyr. However, the computed actinide production ratios should be verified by observations of daughter elements such as Pb and Bi in the same star, which are independent of the subsequent history of star formation and nucelosynthesis in the Galaxy.
  •  
12.
  • Plez, B., et al. (författare)
  • Lead abundance in the uranium star CS 31082-001
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 428:1, s. 9-12
  • Tidskriftsartikel (refereegranskat)abstract
    • In a previous paper we were able to measure the abundance of uranium andthorium in the very-metal poor halo giant BPS CS31082-001, but only obtained an upper limit for the abundanceof lead (Pb). We have got from ESO 17 h of additional exposure on thisstar in order to secure a detection of the minimum amount of leadexpected to be present in CS 31082-001, the amountarising from the decay of the original content of Th and U in the star.We report here this successful detection. We find an LTE abundancelog(Pb/H)+12=-0.55 ± 0.15 dex, one dex below the upper limitsgiven by other authors for the similar stars CS22892-052 and BD +17°3248, alsoenhanced in r-process elements. From the observed present abundances ofTh and U in the star, the expected amount of Pb produced by the decay of232Th, and 238U alone, over 12-15 Gyr is-0.73± 0.17 dex. The decay of 235U is more difficultto estimate, but is probably slightly below the contribution of238U, making the contribution of the 3 actinides onlyslightly below, or even equal to, the measured abundance. Thecontribution from the decay of 234U has was not included, forlack of published data. In this sense our determination is a lower limitto the contribution of actinides to lead production. We comment thisresult, and we note that if a NLTE analysis, not yet possible, doublesour observed abundance, the decay of the 3 actinides will stillrepresent 50 per cent of the total lead, a proportion higher than thevalues considered so far in the literature.Based on observations obtained with the Very Large Telescope of theEuropean Southern Observatory at Paranal, Chile.
  •  
13.
  • Sivarani, T., et al. (författare)
  • First stars IV. CS 29497-030: Evidence for operation of the s-process at very low metallicity
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 413:3, s. 65-1073
  • Forskningsöversikt (refereegranskat)abstract
    • We present an abundance analysis of the very metal-poor, carbon-enhancedstar CS 29497-030. Our results indicate that this unusually hot turnoffstar (Teff = 6650 K, log g = 3.5) has a metallicity [Fe/H] =-2.8, and exhibits large overabundances of carbon ([C/Fe] = +2.38),nitrogen ([N/Fe] = +1.88), and oxygen ([O/Fe] = +1.67). This star alsoexhibits a large enhancement in its neutron-capture elements; thepattern follows that expected to arise from the s-process. Inparticular, the Pb abundance is found to be very high with respect toiron ([Pb/Fe] = +3.5), and also with respect to the second peaks-process elements (e.g., Ba, La, Ce, Nd), which fits into the newlyintroduced classification of lead (Pb) stars. The known spectroscopicbinary status of this star, along with the observed s-process abundancepattern, suggest that it has accreted matter from a companion, whichformerly was an Asymptotic Giant-Branch (AGB) star. In a preliminaryanalysis, we have also identified broad absorption lines of metallicspecies that suggest a large axial rotational velocity for this star,which may be the result of spin-up associated with the accretion ofmaterial from its previous AGB companion. In addition, this star isclearly depleted in the light element Li. When considered along with itsrather high inferred temperature, these observations are consistent withthe expected properties of a very low metallicity halo blue straggler.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (program ID 165.N-0276(A)).Table ef{tab6} is only available in electronic form athttp://www.edpsciences.org
  •  
14.
  • Sivarani, T., et al. (författare)
  • First stars X. The nature of three unevolved carbon-enhanced metal-poor stars
  • 2006
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 459:1, s. 125-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On the order of 20% of the very metal-poor stars in the Galaxy exhibit large carbon enhancements. It is important to establish which astrophysical sites and processes are responsible for the elemental abundance patterns of this early Galactic population. Aims. We seek to understand the nature of the progenitors of three main-sequence turnoff Carbon-Enhanced Metal-Poor (CEMP) stars, CS 31080-095, CS 22958-042, and CS 29528-041, based on a detailed abundance analysis. Methods. From high-resolution VLT/UVES spectra (R similar to 43 000), we determine abundances or upper limits for Li, C, N, O, and other important elements, as well as C-12/C-13 isotopic ratios. Results. All three stars have -3.30 <= [Fe/H]<= -2.85 and moderate to high CNO abundances. CS 22958-042 is one of the most carbon-rich CEMP stars known ([C/Fe] = +3.2), while CS 29528-041 (one of the few N-enhanced metal-poor stars known) is one of the most nitrogen rich ([N/Fe] = +3.0). Oxygen is very high in CS 31080-095 ([O/Fe] = +2.35) and in CS 22958-042 ([O/Fe] = +1.35). All three stars exhibit [Sr/Fe] < 0; Ba is not detected in CS 22958-042 ([Ba/Fe] < -0.53),but it is moderately enhanced ([Ba/Fe] similar to 1) in the other two stars. CS 22958-042 displays one of the largest sodium overabundances yet found in CEMP stars ([Na/Fe] = +2.8). CS 22958-042 has C-12/C-13 = 9, similar to most other CEMP stars without enhanced neutron-capture elements, while C-12/C-13 = 40 in CS 31080-095. CS 31080-095 and CS 29528-041 have A(Li) similar to 1.7, below the Spite Plateau, while Li is not detected in CS 22958-042. Conclusions. CS 22958-042 is a CEMP-no star, but the other two stars are in no known class of CEMP star and thus either constitute a new class or are a link between the CEMP-no and CEMP-s classes, adding complexity to the abundance patterns for CEMP stars. We interpret the abundance patterns in our stars to imply that current models for the presumed AGB binary progenitors lack an extra-mixing process, similar to those apparently operating in RGB stars.
  •  
15.
  • Spite, M., et al. (författare)
  • First stars IX - Mixing in extremely metal-poor giants. Variation of the C-12/C-13, [Na/Mg] and [Al/Mg] ratios
  • 2006
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 455:1, s. 291-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Extremely metal-poor (EMP) stars preserve a fossil record of the composition of the ISM when the Galaxy formed. It is crucial, however, to verify whether internal mixing has modified their surface composition, especially in the giants where most elements can be studied. Aims. We aim to understand the CNO abundance variations found in some, but not all EMP field giants analysed earlier. Mixing beyond the first dredge-up of standard models is required, and its origin needs clarification. Methods. The C-12/C-13 ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters and should be uniformly high in near-primordial gas. We have measured C-12 and C-13 abundances in 35 EMP giants (including 22 with [Fe/H] < -3.0) from high-quality VLT/UVES spectra analysed with LTE model atmospheres. Correlations with other abundance data are used to study the depth of mixing. Results. The C-12/C-13 ratio is found to correlate with [C/Fe] (and Li/H), and clearly anti-correlate with [N/Fe], as expected if the surface abundances are modified by CNO processed material from the interior. Evidence for such deep mixing is observed in giants above log L/L-circle dot = 2.6, brighter than in less metal-poor stars, but matching the bump in the luminosity function in both cases. Three of the mixed stars are also Na- and Al-rich, another signature of deep mixing, but signatures of the ON cycle are not clearly seen in these stars. Conclusions. Extra mixing processes clearly occur in luminous RGB stars. They cannot be explained by standard convection, nor in a simple way by rotating models. The Na- and Al-rich giants could be AGB stars themselves, but an inhomogeneous early ISM or pollution from a binary companion remain possible alternatives.
  •  
16.
  • Spite, M, et al. (författare)
  • First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements
  • 2005
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 430:2, s. 655-668
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the poorly-understood origin of nitrogen in the early Galaxy by determining N abundances from the NH band at 336 nm in 35 extremely metal-poor halo giants, with carbon and oxygen abundances from Cayrel et al. (2004, A&A, 416, 1117), using high-quality ESO VLT/UVES spectra (30 of our 35 stars are in the range -4.1 <[Fe/H] < -2.7 and 22 stars have [Fe/H] < -3.0). N abundances derived both from the NH band and from the CN band at 389 nm for 10 stars correlate well, but show a systematic difference of 0.4 dex, which we attribute to uncertainties in the physical parameters of the NH band (line positions, gf values, dissociation energy, etc.). Because any dredge-up of CNO processed material to the surface may complicate the interpretation of CNO abundances in giants, we have also measured the surface abundance of lithium in our stars as a diagnostic of such mixing. Our sample shows a clear dichotomy between two groups of stars. The first group shows evidence of C to N conversion through CN cycling and strong Li dilution, a signature of mixing; these stars are generally more evolved and located on the upper Red Giant Branch (RGB) or Horizontal Branch (HB). The second group has [N/Fe] < 0.5, shows no evidence for C to N conversion, and Li is only moderately diluted; these stars belong to the lower RGB and we conclude that their C and N abundances are very close to those of the gas from which they formed in the early Galaxy, they are called "unmixed stars". The [O/Fe] and [(C+N)/Fe] ratios are the same in the two groups, confirming that the differences between them are caused by dredge-up of CN-processed material in the first group, with negligible contributions from the O-N cycle. The "unmixed" stars reflect the abundances in the early Galaxy: the [C/Fe] ratio is constant (about + 0.2 dex) and the [C/Mg] ratio is close to solar at low metallicity, favouring a high C production by massive zero-metal supernovae. The [N/Fe] and [N/Mg] ratios scatter widely. Their mean values in each metallicity bin decrease with increasing metallicity, but this trend could be a statistical effect. The larger values of these ratios define a flat upper plateau ([N/Mg] = 0.0, [N/Fe] = + 0.1), which could reflect higher values within a wide range of yields of zero-metal SNe II. Alternatively, by analogy with the DLAs, the lower abundances ([N/Mg] = -1.1, [N/Fe] = -0.7) could reflect generally low yields from the first SNe II, the other stars being N enhanced by winds of massive Asymptotic Giant Branch (AGB) stars. Since all the stars show clear [alpha/Fe] enhancements, they were formed before any significant enrichment of the Galactic gas by SNe Ia, and their composition should reflect the yields of the first SNe II. However, if massive AGB stars or AGB supernovae evolved more rapidly than SNe Ia and contaminated the ISM, our stars would also reflect the yields of these AGB stars. At present it cannot be decided whether primary N is produced primarily in SNe II or in massive AGB stars, or in both. The stellar N abundances and [N/O] ratios are compatible with those found in Damped Lyman-alpha (DLA) systems. They extend the well-known DLA "plateau" at [N/O] approximate to -0.8 to lower metallicities, albeit with more scatter; no star is found below the putative "low [N/alpha] plateau" at [N/O] approximate to -1.55 in DLAs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy