SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Celli Annamaria) "

Sökning: WFRF:(Celli Annamaria)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferri, Maura, et al. (författare)
  • From winery waste to bioactive compounds and new polymeric biocomposites : A contribution to the circular economy concept
  • 2020
  • Ingår i: Journal of Advanced Research. - : Elsevier B.V.. - 2090-1232. ; 24, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper aims at optimising and validating possible routes toward the full valorisation of grape agrowaste to produce bioactive molecules and new materials. Starting from Merlot red pomace, phenol complex mixtures were successfully extracted by using two different approaches. Extracts obtained by solvent-based (SE) technique contained up to 46.9 gGAeq/kgDW of total phenols. Depending on the used solvent, the prevalence of compounds belonging to different phenol families was achieved. Pressurized liquid extraction (PLE) gave higher total phenol yields (up to 79 gGAeq/kgDW) but a lower range of extracted compounds. All liquid extracts exerted strong antioxidant properties. Moreover, both SE and PLE extraction solid residues were directly exploited (between 5 and 20% w/w) to prepare biocomposite materials by direct mixing via an eco-friendly approach with PHBV polymer. The final composites showed mechanical characteristics similar to PHVB matrix. The use of pomace residues in biocomposites could therefore bring both to the reduction of the cost of the final material, as a lower amount of costly PHBV is used. The present research demonstrated the full valorisation of grape pomace, an agrowaste produced every year in large amounts and having a significant environmental impact.
  •  
2.
  • Gontard, Natalie, et al. (författare)
  • A research challenge vision regarding management of agricultural waste in a circular bio-based economy
  • 2018
  • Ingår i: Critical reviews in environmental science and technology. - : Informa UK Limited. - 1064-3389 .- 1547-6537. ; 48:6, s. 614-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural waste is a huge pool of untapped biomass resources that may even represent economic and environmental burdens. They can be converted into bioenergy and bio-based products by cascading conversion processes, within circular economy, and should be considered residual resources. Major challenges are discussed from a transdisciplinary perspective, focused on Europe situation. Environmental and economic consequences of agricultural residue management chains are difficult to assess due to their complexity, seasonality and regionality. Designing multi-criteria decision support tools, applicable at an early-stage of research, is discussed. Improvement of Anaerobic Digestion (AD), one of the most mature conversion technologies, is discussed from a technological point of view and waste feedstock geographical and seasonal variations. Using agricultural residual resources for producing high-value chemicals is a considerable challenge analysed here, taking into account innovative eco-efficient and cost-effective cascading conversion processes (bio-refinery concept). Moreover, the promotion of agricultural residues-based business is discussed through industrial ecology, to promote synergy, on a local basis, between different agricultural and industrial value chains. Finally, to facilitate a holistic approach and optimise materials and knowledge flows management, the connection of stakeholders is discussed to promote cross-sectorial collaboration and resource exchange at appropriate geographic scales. © 2018, © 2018 Nathalie Gontard, Ulf Sonesson, Morten Birkved, Mauro Majone, David Bolzonella, Annamaria Celli, Hélène Angellier-Coussy, Guang-Way Jang, Anne Verniquet, Jan Broeze, Burkhard Schaer, Ana Paula Batista, and András Sebok.
  •  
3.
  • Monari, Stefania, et al. (författare)
  • Cascade strategies for the full valorisation of Garganega white grape pomace towards bioactive extracts and bio-based materials
  • 2020
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Agro-waste reduction and reuse are among the current main social challenges. In this perspective, the present research was aimed at the complete valorisation of Garganega grape pomace by recovering bioactive phenol extracts and by testing the solid fibre extract residues in composite formulation for packaging applications. The pomace was derived from white wine production, therefore, respect to red pomace, it was promptly removed from must after pressing, and its exploitation can be particularly interesting and valuable as still rich in active compounds. Phenol extracts were obtained both via solvent-based and pressurised liquid extractions and their phytochemical compositions were compared in terms of total amount of phenols, flavonoids, flavanols, anthocyanins, hydroxycinnamic acids, and reducing sugars. Antioxidant activity and detailed phenol profiles were also achieved. The highest phenol yield was obtained via solvent-based extraction with 75% acetone (v/v), solid/liquid ratio 1:5, 2h incubation at 50°C (77.9 gGAeq/kgDW). The fibrous solid residue of the extraction was characterized via thermogravimetric analysis and used for composite preparation by melt mixing with the renewable and biodegradable PHBV polymer through a green approach (solvent-less process). The composites resulted thermally stable at high temperatures, showing initial degradation processes only at temperatures higher than 250°C. Differential scanning calorimetry analyses were carried out to study melting and crystallization phenomena, while mechanical properties were investigated by tensile tests. The materials finally showed properties similar to those of the matrix. The bio-composites can be considered as an alternative to plain PHBV, since they are less expensive and eco-friendlier thanks to a reduced polymeric content, and they could represent a suitable way for full agro-waste exploitation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy