SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cetnar J.) "

Sökning: WFRF:(Cetnar J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuijper, J. C., et al. (författare)
  • PU and MA management in thermal htgrs - impact at fuel, reactor and fuel cycle levels
  • 2009
  • Ingår i: 2008 Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008. - 9780791848548 ; , s. 73-81
  • Konferensbidrag (refereegranskat)abstract
    • The PUMA project, a Specific Targeted Research Project (STREP) of the European Union EURATOM 6th Framework Program, is mainly aimed at providing additional key elements for the utilisation and transmutation of plutonium and minor actinides (neptunium and americium) in contemporary and future (high temperature) gas-cooled reactor design, which are promising tools for improving the sustainability of the nuclear fuel cycle. PUMA would also contribute to the reduction of Pu and MA stockpiles and to the development of safe and sustainable reactors for C02-free energy generation. The project runs from September 1, 2006 until August 31, 2009. PUMA also contributes to technological goals of the Generation IV International Forum. It contributes to developing and maintaining the competence in reactor technology in the EU and addresses European stakeholders on key issues for the future of nuclear energy in the EU. An overview is presented of the status of the project at mid-term.
  •  
2.
  • Gudowski, Waclaw, et al. (författare)
  • Review of the European project - Impact of Accelerator-Based Technologies on Nuclear Fission Safety (IABAT)
  • 2001
  • Ingår i: Progress in nuclear energy (New series). - 0149-1970 .- 1878-4224. ; 38:1-2, s. 135-151
  • Tidskriftsartikel (refereegranskat)abstract
    • The IABAT project - Impact of Accelerator Based Technologies on Nuclear Fission Safety - started in 1996 in the frame of 4(th) Framework Programme of the European Union, R&D specific programme Nuclear fission safety 1994-1998, area A.2 Exploring innovative approaches/Fuel cycle concepts, as one of the first common European activities in ADS. The project was completed October 31, 1999. The overall objective of the IABAT project has been a preliminary assessment of the potential of Accelerator-Driven Systems (ADS) for transmutation of nuclear waste and for nuclear energy production with minimum waste generation. Moreover, more specific topics related to nuclear data and code development for ADS have been studied in more detail. Four ADSs have been studied for different fuel/coolant combinations: liquid metal coolant and solid fuel, liquid metal coolant and dispersed fuel, and fast and thermal molten salt systems. Target studies comprised multiple target solutions and radiation damage problems in a target environment. In a tool development part of the project a methodology of subcriticality monitoring has been developed based on Feynman-alpha and Rossi-alpha methods. Moreover, a new Monte-Carlo burnup code taking full advantage of continuous neutron cross-section data has been developed and benchmarked. Impact on the risk from high-level waste repositories fi om radiotoxicity reduction using ADS has been assessed giving no crystal-clear benefits of ADS for repository radiotoxicity reduction but concluding some important prerequisites for effective transmutation. In proliferation studies important differences between critical reactors and ADS have been underlined and non-proliferation measures have been proposed. In assessment of accelerator technology costing models have been created that allow the circular and linear accelerator options to be compared and the effect of parameter variations examined. The calculations reported show that cyclotron systems would be more economical, due mainly to the advantage of the cost of RF power supplies. However, the accelerator community regards with skepticism the possibility of transporting and extracting more than a 10mA beam current from a 1GeV cyclotron and therefore technical factors may limit the application of cyclotrons. Finally, this review summarizes development of nuclear data in the energy region between 20 Mev and 150 MeV. Neutron and proton transport data files for Fe, Ni, Pb, Th, U-238 and Pu-239 have been created. The high-energy part of the data files consists completely of results from model calculations, which are benchmarked against the available experimental data. Although there is obviously future work left regarding fine-tuning of several parts of the data files, the representation of nuclear reaction information up to 150 MeV is already better than can be attained with intranuclear cascade codes.
  •  
3.
  •  
4.
  • Talamo, A., et al. (författare)
  • MCB1C2 bug on thermal reactors
  • 2006
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 33:7, s. 653-654
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy