SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chafik Léon) "

Sökning: WFRF:(Chafik Léon)

  • Resultat 1-42 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arunraj, Kondetharayil Soman, et al. (författare)
  • Linking Coherent Anticyclonic Eddies in the Iceland Basin to Decadal Oceanic Variability in the Subpolar North Atlantic
  • 2022
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 127:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Iceland Basin in the eastern Subpolar North Atlantic is an eddy-rich region characterized by intense anticyclonic eddy activity. Our study present the variability of coherent Anticyclonic Eddies (AEs) generated in this region, using satellite altimetry and two ocean eddy tracking algorithms. The yearly count of AEs in the Iceland Basin reveals a decadal variability similar to that of ocean heat content change in the eastern subpolar gyre. Periods with higher number of AEs coincide with periods of increased ocean heat content, and vice versa. However, both algorithms agree that more than 50% of the detected AEs are confined to the central Iceland Basin. The annual number of AEs also tracks zonal shifts of the subpolar front, a variable that can explain about 53 (77)% of the interannual (decadal) variability of AEs in the Iceland Basin. Finally, a Lagrangian approach is used to demonstrate that the amount of subtropical versus subpolar water masses reaching the Iceland Basin appears to influence, via baroclinic instability, the generation of AEs.
  •  
2.
  • Berntell, Ellen, et al. (författare)
  • Representation of Multidecadal Sahel Rainfall Variability in 20th Century Reanalyses
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Summer rainfall in the Sahel region has exhibited strong multidecadal variability during the 20th century causing dramatic human and socio-economic impacts. Studies have suggested that the variability is linked to the Atlantic multidecadal variability; a spatially persistent pattern of warm/cold sea surface temperatures in the North Atlantic. In the last few years, several promising century-long reanalysis datasets have been made available, opening up for further studies into the dynamics inducing the observed low-frequency rainfall variability in Sahel. We find that although three of the 20th century ECMWF reanalyses show clear multidecadal rainfall variability with extended wet and dry periods, the timing of the multidecadal variability in two of these reanalyses is found to exhibit almost anti-phase features for a large part of the 20th century when compared to observations. The best representation of the multidecadal rainfall variability is found in the ECMWF reanalysis that, unlike the other reanalyses (including NOAA's 20th century), do not assimilate any observations and may well be a critical reason for this mismatch, as discussed herein. This reanalysis, namely ERA-20CM, is thus recommended for future studies on the dynamics driving the multidecadal rainfall variability in Sahel and its linkages to the low-frequency North Atlantic oceanic temperatures.
  •  
3.
  •  
4.
  • Broomé, Sara, et al. (författare)
  • A Satellite-Based Lagrangian Perspective on Atlantic Water Fractionation Between Arctic Gateways
  • 2021
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 126:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Warm Atlantic Water reaches the Arctic Ocean via two gateways: the Barents Sea Opening (BSO) and Fram Strait. Here, we study the near-surface flow of the Atlantic Water in the Nordic Seas and its fractionation between these Arctic gateways, using simulated Lagrangian trajectories based on satellite altimetry for 1994–2018. Lagrangian particles are released in the eastern Nordic Seas, where Atlantic Water flows poleward in two current cores: an inner branch along the Norwegian Continental Slope and an outer sea ward branch. The trajectories toward Fram Strait and the BSO are, in an averaged sense, largely steered by the bottom topography, and on inter-annual timescales we find an anticorrelation in the number of particles that reach the two gateways. Most of the particles released in the inner branch enter the Barents Sea and most of the particles seeded in the outer branch reach Fram Strait. However, there is a significant cross-over of particles from the outer to the inner branch in the Lofoten Basin, and nearly half of the total number of particles entering the BSO originate in the outer branch. This cross-over is accomplished solely by the time-fluctuating part of the velocity field, and it becomes stronger when the eddy kinetic energy in the Lofoten Basin is anomalously high. Thus, the outer branch may, via processes in the Lofoten Basin, be important for Barents Sea climate variability.
  •  
5.
  • Broomé, Sara, 1989- (författare)
  • Atlantic Water in the Nordic Seas : A satellite altimetry perspective on ocean circulation
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Atlantic Water in the Nordic Seas contributes to the mild climate of Northern Europe and is the main oceanic source of heat for the Arctic. The northward bound transport of the warm and saline Atlantic Water is mediated by a topographically constrained cyclonic boundary current along the Norwegian continental slope. The analysis within this thesis is based on satellite observations of dynamic Sea Surface Heights (SSH) from 1993 to the recent present, combined with both hydrographic observations and modelling. It provides some new perspectives and results, as well as corroborates the essential role of bottom topography for the circulation in the Nordic Seas.In the first part of the thesis, the topographic constraint is used in the analysis by examining the satellite-derived SSH along topographic contours. We find stationary along-contour anomalies that indicate deviations from strict topographic steering. However, we show that these deviations are dynamically consistent with, and can be explained by, potential vorticity conservation in an adiabatic steady-state model for flow over a topographic slope. The analysis along topographic contours is further developed to study northward-propagating, low-frequency ocean temperature signals. These signals have an expression in the SSH and their propagation speed is remarkably slow compared to the current speed. We propose a conceptual model of shear dispersion effects, in which the effective advection speed of a tracer is determined not only by the rapid current core, but by a mean velocity taken over the cross-flow extent of Atlantic Water. The model predicts a reduced effective tracer advection velocity, comparable to the one observed.The close connection between anomalies in SSH and heat content is further used to study decadal variability in the Nordic Seas. There is a shift in decadal trends in the mid-2000s, from a period of strong increase in SSH and heat content to a more stagnant period. We find this variability to be forced remotely, rather than by local air-sea heat fluxes. By developing a conceptual model of ocean heat convergence, we are able to explain the broad features of the decadal changes with the temperature variability of the inflowing Atlantic Water from the subpolar North Atlantic.In the final part of the thesis, satellite-derived surface geostrophic velocity fields are used as input to a Lagrangian trajectory model. Based on this, we study the fractionation of the Atlantic Water in the Nordic Seas between the two straits towards the Arctic Ocean: the Barents Sea Opening and the Fram Strait. This Lagrangian approach also provides insights on the origin of the water that reach the straits. We find that it is the frontal current branch, rather than the slope current, that contributes to the variability of the Barents Sea Opening inflow of warm Atlantic Water, and thus potentially to the climate of the Barents Sea and its sea ice cover.
  •  
6.
  • Broomé, Sara, 1989-, et al. (författare)
  • Mechanisms of decadal changes in sea surface height and heat content in the eastern Nordic Seas
  • 2020
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 16:3, s. 715-728
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Seas constitute the main ocean conveyor of heat between the North Atlantic Ocean and the Arctic Ocean. Although the decadal variability in the subpolar North Atlantic has been given significant attention lately, especially regarding the cooling trend since the mid-2000s, less is known about the potential connection downstream in the northern basins. Using sea surface heights from satellite altimetry over the past 25 years (1993–2017), we find significant variability on multiyear to decadal timescales in the Nordic Seas. In particular, the regional trends in sea surface height show signs of a weakening since the mid-2000s, as compared to the rapid increase in the preceding decade since the early 1990s. This change is most prominent in the Atlantic origin waters in the eastern Nordic Seas and is closely linked, as estimated from hydrography, to heat content. Furthermore, we formulate a simple heat budget for the eastern Nordic Seas to discuss the relative importance of local and remote sources of variability; advection of temperature anomalies in the Atlantic inflow is found to be the main mechanism. A conceptual model of ocean heat convergence, with only upstream temperature measurements at the inflow to the Nordic Seas as input, is able to reproduce key aspects of the decadal variability in the heat content of the Nordic Seas. Based on these results, we argue that there is a strong connection with the upstream subpolar North Atlantic. However, although the shift in trends in the mid-2000s is coincident in the Nordic Seas and the subpolar North Atlantic, the eastern Nordic Seas have not seen a reversal of trends but instead maintain elevated sea surface heights and heat content in the recent decade considered here.
  •  
7.
  •  
8.
  • Chafik, Léon, et al. (författare)
  • Discovery of an unrecognized pathway carrying overflow waters toward the Faroe Bank Channel
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dense overflow waters of the Nordic Seas are an integral link and important diagnostic for the stability of the Atlantic Meridional Overturning Circulation (AMOC). The pathways feeding the overflow remain, however, poorly resolved. Here we use multiple observational platforms and an eddy-resolving ocean model to identify an unrecognized deep flow toward the Faroe Bank Channel. We demonstrate that anticyclonic wind forcing in the Nordic Seas via its regulation of the basin circulation plays a key role in activating an unrecognized overflow path from the Norwegian slope - at which times the overflow is anomalously strong. We further establish that, regardless of upstream pathways, the overflows are mostly carried by a deep jet banked against the eastern slope of the Faroe-Shetland Channel, contrary to previous thinking. This deep flow is thus the primary conduit of overflow water feeding the lower branch of the AMOC via the Faroe Bank Channel. The authors show that overflow waters flowing toward the Faroe Bank Channel can take a previously unidentified path to the Faroe-Shetland Channel where it joins an unrecognized deep-reaching jet located along its eastern rather than its western boundary.
  •  
9.
  • Chafik, Léon, 1985- (författare)
  • Dynamics and Variability of the Circulation in the North-Atlantic Subpolar Seas
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with the dynamics and circulation in the northern North Atlantic and the Nordic Seas, processes of crucial importance for the mild climate of Scandinavia and Northern Europe. High-resolution ADCP scans of currents from Greenland to Scotland in the top 400 m demonstrate that the Reykjanes Ridge is a very effective separator of flow towards the Nordic and Labrador Seas, respectively. It was found that the meridional overturning circulation has weakened by ~1.7 Sv (1 Sv = 106 m3 s-1) during the 18-year period when altimetric data were available. This trend may be an effect of the Atlantic Multidecadal Oscillation, but is certainly not due to the North Atlantic Oscillation (NAO). By studying the circulation in the Faroe-Shetland Channel, which is an important choke point for the global thermohaline circulation, it was concluded that the contraction of the Norwegian-Sea gyre during low NAO periods plays an important role for disturbing the flow pattern. This specifically affects the regional ocean climate by leading to an accumulation of warm and saline Atlantic waters in the channel. During high NAO phases the circulation is strongly topographically controlled. The Norwegian Atlantic Slope Current (NwASC) is the main flow branch linking the North Atlantic to the Arctic and Barents Sea. It was found that the NwASC is largely coherent over seasonal to interannual time-scales. However, on shorter time-scales the coherency of the flow shows a sustained and pronounced weakening downstream of Lofoten. Intense eddy-shedding from the slope into the Lofoten Basin damps the coherent structure of the flow. The eddies take about two months to propagate to and to merge with the semi-permanent anticyclonic vortex above the deepest part of the Lofoten Basin. These results have implications for how flow/hydrographic anomalies are transferred through the Nordic Seas towards the Arctic. Anomalous transports of warm water into the Arctic and Barents Sea via the NwASC are found to be driven by a combination of the NAO and the other two leading modes of atmospheric variability in the North Atlantic. The results reported in the thesis may be of importance for achieving a correct representation of the heat conveyed polewards in climate models.
  •  
10.
  • Chafik, Léon, et al. (författare)
  • North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional sea-level rise is characterized by decadal acceleration and deceleration periods that typically stem from oceanic climate variability. Here, we investigate decadal sea-level trends during the altimetry era and pin down the associated ocean circulation changes. We find that decadal subpolar gyre cooling (warming), strengthening (weakening), widening (shrinking) since the mid-2000s (early 1990s) resulted in negative (positive) sea level trends of −7.1 mm/yr ± 1.3 mm/yr (3.9 mm/yr ± 1.5 mm/yr). These large-scale changes further coincide with steric sea-level trends, and are driven by decadal-scale ocean circulation variability. Sea level on the European shelf, however, is found to correlate well with along-slope winds (R = 0.78), suggesting it plays a central role in driving the associated low-frequency dynamic sea level variability. Furthermore, when the North Atlantic is in a cooling (warming) period, the winds along the eastern boundary are predominantly from the North (South), which jointly drive a slowdown (rapid increase) in shelf and coastal sea level rise. Understanding the mechanisms that produce these connections may be critical for interpreting future regional sea-level trends.
  •  
11.
  • Chafik, Léon, 1985-, et al. (författare)
  • Observed mechanisms activating the recent subpolar North Atlantic Warming since 2016
  • 2023
  • Ingår i: Philosophical Transactions. Series A. - 1364-503X .- 1471-2962. ; 381:2262
  • Tidskriftsartikel (refereegranskat)abstract
    • The overturning circulation of the subpolar North Atlantic (SPNA) plays a fundamental role in Earth's climate variability and change. Here, we show from observations that the recent warming period since about 2016 in the eastern SPNA involves increased western boundary density at the intergyre boundary, likely due to enhanced buoyancy forcing as a response to the strong increase in the North Atlantic Oscillation since the early 2010s. As these deep positive density anomalies spread southward along the western boundary, they enhance the North Atlantic Current and associated meridional heat transport at the intergyre region, leading to increased influx of subtropical heat into the eastern SPNA. Based on the timing of this chain of events, we conclude that this recent warming phase since about 2016 is primarily associated with this observed mechanism of changes in deep western boundary density, an essential element in these interactions.This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.
  •  
12.
  • Chafik, Léon, 1985-, et al. (författare)
  • On the spatial structure and temporal variability of poleward transport between Scotland and Grennland :
  • 2014
  • Ingår i: Journal of Geophysical Research: Oceans. - 2169-9291. ; 119:2, s. 824-841
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] The flow north of warm subtropical water though the northeastern Atlantic is known to have many pathways that vary over time. Here we use a combination of upper ocean current measurements between Greenland and Scotland near 60°N and satellite altimetry to examine the space-time variability of poleward transport. The high-resolution scans of currents in the top 400 m show that the Reykjanes Ridge serves as a very effective separator of flow toward the Nordic and Labrador Seas, respectively. Whereas the Labrador Sea branch exhibits two mean flows to the north on the western slope of the Reykjanes Ridge, the eastern branch flows north in roughly equal amounts over the deep Maury channel and east of Hatton Bank including the Slope Current. There is also a well-defined southward flow along the eastern slope of the Reykjanes Ridge. The satellite altimetric sea surface height (SSH) data show good overall agreement with geostrophically determined -level difference from the repeat ADCP sections (1999–2002), but are unable to resolve the fine structure of the topographically defined mean circulation. The altimetric data show that variations in poleward flow west and east of the Reykjanes Ridge are strongly anticorrelated. They further reveal that the two eastern subbranches also exhibit anticorrelated variability, but offset in time with respect to the Labrador Sea branch. Remarkably, all these variations cancel out for the entire Greenland-Scotland section leaving a gradual decrease in sea-level difference of about 0.06 m over the 1993 to the end of 2010 observation period.
  •  
13.
  • Chafik, Léon, 1985-, et al. (författare)
  • The Faroe‐Shetland Channel Jet : Structure, Variability, and Driving Mechanisms
  • 2023
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 128:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Faroe-Bank Channel (FBC) is a key gateway through which dense overflow water of the Nordic Seas supplies the lower limb of the Atlantic Meridional Overturning Circulation. Most recently, it was discovered that a deep jet through the Faroe-Shetland Channel carries the bulk of this overflow water, but numerous questions regarding its structure, seasonality, and interannual variability as well as its linkage to atmospheric forcing remain poorly understood. A realistic high-resolution ocean reanalysis (GLORYS12; 1993–2018) is, therefore, employed to address these questions. We first confirm that the Faroe-Shetland Channel Jet is a permanent feature in GLORYS12 as well as in an ensemble of low-resolution reanalyses. On seasonal time scales, we find a strong transport covariability between this deep jet and the observed FBC overflow. On interannual time scales, the strength of this deep jet is governed by the wind-forced circulation in the Nordic Seas. Due to the largely barotropic structure of these flows, they have a signature detectable in satellite sea-surface heights. Further, we suggest that the structure of the deep jet is qualitatively consistent with a geostrophic dynamical model that accounts for along-isobath density variations. This study indicates that GLORYS12 is a promising product to study the dense water pathways and dynamics in the Nordic Seas.
  •  
14.
  • Chafik, Léon, 1985- (författare)
  • The Response of the Circulation in the Faroe-Shetland Channel to the North Atlantic Oscillation
  • 2012
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 64, s. 18423-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study, based on satellite-derived sea-surface heights and temperatures as well as hydrographic data, attempts to shed some light on the role of the extreme phases of the North Atlantic Oscillation (NAO) for the local dynamics of the Faroe-Shetland Channel (FSC). During the low-NAO event 2009-10 the Shetland-slope current showed a significant deflection from its usual path above the maximal gradient of the bathymetry, ultimately resulting in an anticyclone. This led to an accumulation of North Atlantic Water (NAW) over the deeper parts of the channel, manifested as a pronounced deepening of the halocline. Leading this deflection of the slope current by around 2 weeks, a cyclonic eddy associated with a doming of the halocline and originating from north of the Faroes (and hence constituted by Modified North Atlantic Waters) had moved southwards in the channel, coming to rest at its southern entrance. Assessing the influence of the NAO on these regional dynamics using 1992-2010 altimetric data, it was found that for positive phases of the NAO, the surface circulation tended to be strongly bathymetrically constrained and thus resembles the mean regional circulation. The negative phases of the NAO are associated with a regional weakening of the wind-stress curl, which leads to a contraction of the Norwegian-Sea gyre and a linked northward migration of the FSC recirculation involving a deflected path of the Shetland-slope current. This change in the circulation under negative NAO conditions may have an impact on the regional ocean climate through the accumulation of saline NAW in the channel.
  •  
15.
  •  
16.
  • Chafik, Léon, et al. (författare)
  • Volume, Heat, and Freshwater Divergences in the Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the Meridional Overturning Circulation
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:9, s. 4799-4808
  • Tidskriftsartikel (refereegranskat)abstract
    • The meridional overturning circulation (MOC) decreases rapidly in subpolar and Nordic regions where the warm upper layer loses its buoyancy due to intense heat loss, sinks, and flows south. The major volume loss of the upper limb of the MOC, similar to 9.6 Sv out of 18.4 +/- 3.4 Sv, occurs as subduction across the Iceland Basin and Irminger Sea while the major heat loss, 273 TW out of 395 +/- 74 TW is associated with the MOC branch that continues into the Nordic Seas where North Atlantic deep overflow water is produced. The 122 +/- 79 TW heat flux convergence in the subpolar gyre appears to be significantly larger than various estimates of heat loss to the atmosphere. Much of the 0.09 +/- 0.02 Sv freshwater divergence is presumably balanced by runoff from the Greenland shelf. These estimates suggest that the Nordic Seas, not the Labrador Sea, are key to the state of the MOC. Plain language summary The meridional overturning circulation is a two-dimensional view of the flow north of upper-ocean warm water and its return south as cold deep and intermediate water. But the actual pathways of warm-to-cold conversion are several and remarkably diverse: One branch continues into the Nordic Seas where very dense water is produced and eventually spills back into the deep North Atlantic, another branch weaves its way around the entire subpolar basin and the southern tip of Greenland to the Labrador Sea where intermediate water is formed, and the third branch is an overturning that takes place within the subpolar waters between Greenland and Scotland. Volumetrically, this is the largest branch, but in terms of heat loss the Nordic Seas, branch surrenders far more heat to the atmosphere than the other two combined. It thus plays the key role in maintaining a strong meridional overturning circulation.
  •  
17.
  • Chen, Deliang, 1961, et al. (författare)
  • Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences
  • 2020
  • Ingår i: Tellus Series B-Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 72:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is not only about changes in means of climatic variables such as temperature, precipitation and wind, but also their extreme values which are of critical importance to human society and ecosystems. To inspire the Swedish climate research community and to promote assessments of international research on past and future changes in extreme weather events against the global climate change background, the Earth Science Class of the Royal Swedish Academy of Sciences organized a workshop entitled 'Extreme weather events in a warming world' in 2019. This article summarizes and synthesizes the key points from the presentations and discussions of the workshop on changes in floods, droughts, heat waves, as well as on tropical cyclones and extratropical storms. In addition to reviewing past achievements in these research fields and identifying research gaps with a focus on Sweden, future challenges and opportunities for the Swedish climate research community are highlighted.
  •  
18.
  • Dangendorf, Sonke, et al. (författare)
  • Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:6, s. 514-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding historical and projected coastal sea-level change is limited because the impact of large-scale ocean dynamics is not well constrained. Here, we use a global set of tide-gauge records over nine regions to analyse the relationship between coastal sea-level variability and open-ocean steric height, related to density fluctuations. Interannual-to-decadal sea-level variability follows open-ocean steric height variations along many coastlines. We extract their common modes of variability and reconstruct coastal sterodynamic sea level, which is due to ocean density and circulation changes, based on steric height observations. Our reconstruction, tested in Earth system models, explains up to 91% of coastal sea-level variability. Combined with barystatic components related to ocean mass change and vertical land motion, the reconstruction also permits closure of the coastal sea-level budget since 1960. We find ocean circulation has dominated coastal sea-level budgets over the past six decades, reinforcing its importance in near-term predictions and coastal planning. Coastal sea levels are impacted by local vertical land motion plus local and remote changes to ocean circulation, density and mass changes. Tide-gauge records are used to reconstruct the coastal sea-level budget over nine regions, showing its variability has been dominated by ocean circulation since 1960.
  •  
19.
  • de Boer, Agatha M., et al. (författare)
  • Interconnectivity Between Volume Transports Through Arctic Straits
  • 2018
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 123:12, s. 8714-8729
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic heat and freshwater budgets are highly sensitive to volume transports through the Arctic-Subarctic straits. Here we study the interconnectivity of volume transports through Arctic straits in three models; two coupled global climate models, one with a third-degree horizontal ocean resolution (High Resolution Global Environmental Model version 1.1 [HiGEM1.1]) and one with a twelfth-degree horizontal ocean resolution (Hadley Centre Global Environment Model 3 [HadGEM3]), and one ocean-only model with an idealized polar basin (tenth-degree horizontal resolution). The two global climate models indicate that there is a strong anticorrelation between the Bering Strait throughflow and the transport through the Nordic Seas, a second strong anticorrelation between the transport through the Canadian Arctic Archipelago and the Nordic Seas transport, and a third strong anticorrelation is found between the Fram Strait and the Barents Sea throughflows. We find that part of the strait correlations is due to the strait transports being coincidentally driven by large-scale atmospheric forcing patterns. However, there is also a role for fast wave adjustments of some straits flows to perturbations in other straits since atmospheric forcing of individual strait flows alone cannot lead to near mass balance fortuitously every year. Idealized experiments with an ocean model (Nucleus for European Modelling of the Ocean version 3.6) that investigate such causal strait relations suggest that perturbations in the Bering Strait are compensated preferentially in the Fram Strait due to the narrowness of the western Arctic shelf and the deeper depth of the Fram Strait. Plain Language Summary The Arctic is one of the most fragile places on the Earth, facing double the rate of warming as the rest of the globe. This warming is partly due to melting of sea ice because open water reflects less sunlight than ice. One of the major controls on Arctic sea ice concentration is the heat flowing into the Arctic through its straits. However, due to the harsh conditions in the Arctic, there are limited long-term observations of the currents flowing through these straits. Here we turn to climate models to investigate these Arctic straits flows and in particular focus on how flows into and out of the Arctic balance each other. We find that in some instances specific pairs of strait flows are simultaneously affected by large-scale atmospheric. In other instances, the inflow through one strait flows out through another distant strait because of the way the ocean floor guides the currents. Traditionally, the flows through Arctic straits are studied in relation to local forces such as wind and sea level. Our work suggests value in a more holistic approach; one that also accounts for flow changes in a strait as a response to flow changes in other straits.
  •  
20.
  • Desbruyeres, Damien, et al. (författare)
  • A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Subpolar North Atlantic is known for rapid reversals of decadal temperature trends, with ramifications encompassing the large-scale meridional overturning and gyre circulations, Arctic heat and mass balances, or extreme continental weather. Here, we combine datasets derived from sustained ocean observing systems (satellite and in situ), idealized observation-based modelling (advection-diffusion of a passive tracer), and a machine learning technique (ocean profile clustering) to document and explain the most-recent and ongoing cooling-to-warming transition of the Subpolar North Atlantic. Following a gradual cooling of the region that was persisting since 2006, a surface-intensified and large-scale warming sharply emerged in 2016 following an ocean circulation shift that enhanced the northeastward penetration of warm and saline waters from the western subtropics. The long ocean memory of the Subpolar North Atlantic implies that this advection-driven warming is likely to persist in the near-future with possible implications for the Atlantic multidecadal variability and its global impacts. The subpolar North Atlantic Ocean warmed sharply after 2016 as the transport of warm saline waters from the western subtropics was enhanced - following a period of cooling between 2006 and 2016 - according to analyses of observations via idealized modelling and machine-learning techniques.
  •  
21.
  • Frob, F., et al. (författare)
  • Wintertime fCO(2) Variability in the Subpolar North Atlantic Since 2004
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:3, s. 1580-1590
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter data of surface ocean temperature (SST), salinity (SSS) and CO2 fugacity (fCO(2)) collected on the VOS M/V Nuka Arctica in the subpolar North Atlantic between 2004 and 2017 are used to establish trends, drivers, and interannual variability. Over the period, waters cooled and freshened, and the fCO(2) increased at a rate similar to the atmospheric CO2 growth rate. When accounting for the freshening, the inferred increase in dissolved inorganic carbon (DIC) was found to be approximately twice that expected from atmospheric CO2 alone. This is attributed to the cooling. In the Irminger Sea, fCO(2) exhibited additional interannual variations driven by atmospheric forcing through winter mixing. As winter fCO(2) in the region is close to the atmospheric, the subpolar North Atlantic has varied between being slightly supersaturated and slightly undersaturated over the investigated period. Plain Language Summary The global oceans take up roughly a quarter of carbon dioxide (CO2) from fossil fuels and industry per year. As the emissions of CO2 increase, the amount of CO2 taken up by the oceans should increase in proportion; however, the ability of the ocean to remove CO2 from the atmosphere varies on interannual to decadal time scales. Here we assess processes that drive short-term variability and long-term trends of the subpolar North Atlantic carbon sink based on observational data obtained during winters between 2004 and 2017. We find that the subpolar North Atlantic has indeed kept pace with rising emissions over the entire period of time, which was mainly attributed to solubility-driven uptake of CO2. Year-to-year changes of the surface ocean partial pressure of CO2 can be linked to the depth of the winter mixed layer as well as atmospheric forcing. In general, the North Atlantic has shifted between a small source and a small sink of atmospheric CO2 during wintertime. Our results underline the need to maintain long-term physical, chemical, and biological observations in order monitor the ocean CO2 sink and understand the processes driving variability.
  •  
22.
  • Hátún, Hjálmar, et al. (författare)
  • The Norwegian Sea Gyre - A Regulator of Iceland-Scotland Ridge Exchanges
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Norwegian Sea gyre (NSG) is a large body of Arctic intermediate water and deep dense overflow waters, which circulate counterclockwise within the Norwegian Sea. Argo float trajectories presented in this study suggest that the NSG attains its strongest and most focused flow downstream of a confluence of subarctic waters from the Iceland Sea and the Jan Mayen Ridge at steep bathymetry north of the Faroe slope. Based on hydrographic data from a meridional standard section across this flow (1988 to present), the first baroclinic estimate of the NSG circulation strength is provided. We, furthermore, show that the NSG circulation regulates key aspects of both the poleward Atlantic Water (AW) currents and the equatorward near-bottom and mid-depth flows in the Norwegian Sea - the main arteries of the Meridional Overturning Circulation. More specifically, we demonstrate close links between the NSG circulation and (i) the observed Faroe Bank Channel Overflow (FBCO) transport, (ii) variable depth of the main thermocline separating AW from the underlying colder and denser subarctic water masses, and (iii) satellite-derived sea-surface heights (SSHs) in the southern Nordic Seas. In general, a strong NSG and weak FBCO transport are associated with an uplifted thermocline and depressed SSH. Along a narrow band near the Norwegian and Shetland slopes, a strong NSG - oppositely - links to a depressed interface. Daily records of the FBCO transport, and satellite altimetry in a sensitive region north of the Iceland-Faroe Ridge, complement our hydrographic monitoring of the NSG strength. Together these records constitute valuable indicators for aspects of the Norwegian Sea physical oceanography, which likely have an impact on regional climate, ecology and biological productivity.
  •  
23.
  • Holliday, N. Penny, et al. (författare)
  • Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.
  •  
24.
  • Iqbal, Waheed, 1985-, et al. (författare)
  • Troposphere-Stratosphere Dynamical Coupling in Regard to the North Atlantic Eddy-Driven Jet Variability
  • 2019
  • Ingår i: Journal of the Meteorological Society of Japan. - : Meteorological Society of Japan. - 0026-1165 .- 2186-9057. ; 97:3, s. 657-671
  • Tidskriftsartikel (refereegranskat)abstract
    • For several decades, the interaction between the troposphere and the stratosphere has attracted the attention of climate scientists, not least for the benefit it has on understanding dynamical processes and predictability. This interaction has been revived recently in regard to downward disturbance propagation effects on tropospheric circulations. In the current study, we investigate such interactions over the North Atlantic region in relation to the eddy-driven jet stream. The atmospheric low-frequency variability in the winter over the North Atlantic sector is mainly associated with variations in the latitudinal positions of the North Atlantic eddy-driven jet stream. The Japanese Reanalysis JRA-55 data has been used to analyze the jet latitude statistics. The results reveal robust trimoclality of the North Atlantic jet reflecting the latitudinal (i.e., northern, central and southern) positions in agreement with other reanalysis products. 30 major Sudden Stratospheric Warming (SSW) events are analyzed in relation to the three modes or regimes of the eddy-driven jet. The frequency of occurrence of the eddy-driven jet to be in a specific latitudinal position is largely related to the wave amplitude. The stratospheric polar vortex experiences significant changes via upward wave propagation associated with the jet positions. It is found that when the jet is close to its central mode the wave propagation of zonal wave number 2 (WN2) from the troposphere to the stratosphere is significantly high. Eliassen-Palm (EP) fluxes from all waves and zonal wave number 1 (WN1) depict the deceleration of the stratospheric polar vortex for the eddy-driven jet with a latitudinal position close to the northern mode. Plumb wave activity variations originate mainly in the Atlantic sector depending on the North Atlantic eddy-driven jet states. These significant associations between preferred latitudinal positions of the North Atlantic eddy-driven jet and the stratospheric dynamics may be a source of predictability.
  •  
25.
  • Kondetharayil Soman, Arunraj, 1988- (författare)
  • Dynamical aspects of coherent eddies in the North Atlantic Ocean : Insights from Satellite Observations
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Oceanic mesoscale eddies, often referred to as the “weather of the ocean”, have horizontal scales of O(10) − O(102) kilometers and timescales spanning days to months. These structures comprise a complex system of coherent eddies (meaning they retain their shape and structure over time and space), filaments, and spirals that influence the transport of heat, salt, and nutrients in the ocean. In this thesis, we focus on studying coherent eddies along the pathways of the North Atlantic Meridional Overturning Circulation using satellite observations, ocean reanalyses, and in-situ data. We apply an automatic algorithm to detect eddies and a Lagrangian trajectory model, based on satellite-observed current velocities, to understand the formation and dynamics of the eddies. The thesis begins by studying the low-frequency variability of anticyclonic eddies in the Gulf Stream region, which are generally warmer than surrounding waters. Our results show an increase in their formation in the late 2000s, linked to a northward shift in the Gulf Stream and a decrease in water advected from the Labrador Sea. These results contradict previous studies that reported an abrupt regime change in 2000 in the number of warm anticyclones based on sea surface temperature data. The second study focuses on eddies in the Iceland Basin. Our analysis shows that the interannual variability in the number of anticyclonic eddies follows a decadal pattern consistent with the ocean heat content variability of the eastern subpolar North Atlantic. In addition, our Lagrangian model shows that the amount of subtropical versus subpolar water advected into the Iceland Basin affects the generation of anticyclonic eddies through baroclinic instability. In the third study of the thesis, we use both Eulerian and Lagrangian methods to calculate the kinetic energy of mesoscale eddies in the Nordic Seas. Our study reveals that coherent eddies contribute significantly to the total eddy energy compared to other mesoscale fluctuations, and there are geographic variations in the distribution of eddy energy for both anticyclonic and cyclonic eddies. It is noteworthy that the low-frequency variability of anticyclonic ed- dies tends to follow the local ocean heat content variability even in these high-latitude oceans. The final study focuses on the structure and variability of the recently discovered deep jet in the Faroe-Shetland Channel, which transports cold and dense overflow water southward. Our study finds a strong correlation between the interannual variability of the number of anticyclonic eddies in the channel and the transport of the deep water. Further investigation is necessary to comprehend how eddies modulate the overflow transport. The results in this thesis indicate that changes in ocean heat content play a key role not only in our climate but also in the number of eddies on low-frequency time scales at subtropical, subpolar, and even higher latitudes. This can have consequences for the marine ecosystem. 
  •  
26.
  •  
27.
  • Lee, Craig M., et al. (författare)
  • A Framework for the Development, Design and Implementation of a Sustained Arctic Ocean Observing System
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Rapid Arctic warming drives profound change in the marine environment that have significant socio-economic impacts within the Arctic and beyond, including climate and weather hazards, food security, transportation, infrastructure planning and resource extraction. These concerns drive efforts to understand and predict Arctic environmental change and motivate development of an Arctic Region Component of the Global Ocean Observing System (ARCGOOS) capable of collecting the broad, sustained observations needed to support these endeavors. This paper provides a roadmap for establishing the ARCGOOS. ARCGOOS development must be underpinned by a broadly endorsed framework grounded in high-level policy drivers and the scientific and operational objectives that stem from them. This should be guided by a transparent, internationally accepted governance structure with recognized authority and organizational relationships with the national agencies that ultimately execute network plans. A governance model for ARCGOOS must guide selection of objectives, assess performance and fitness-to-purpose, and advocate for resources. A requirements-based framework for an ARCGOOS begins with the Societal Benefit Areas (SBAs) that underpin the system. SBAs motivate investments and define the system's science and operational objectives. Objectives can then be used to identify key observables and their scope. The domains of planning/policy, strategy, and tactics define scope ranging from decades and basins to focused observing with near real time data delivery. Patterns emerge when this analysis is integrated across an appropriate set of SBAs and science/operational objectives, identifying impactful variables and the scope of the measurements. When weighted for technological readiness and logistical feasibility, this can be used to select Essential ARCGOOS Variables, analogous to Essential Ocean Variables of the Global Ocean Observing System. The Arctic presents distinct needs and challenges, demanding novel observing strategies. Cost, traceability and ability to integrate region-specific knowledge have to be balanced, in an approach that builds on existing and new observing infrastructure. ARCGOOS should benefit from established data infrastructures following the Findable, Accessible, Interoperable, Reuseable Principles to ensure preservation and sharing of data and derived products. Linking to the Sustaining Arctic Observing Networks (SAON) process and involving Arctic stakeholders, for example through liaison with the International Arctic Science Committee (IASC), can help ensure success.
  •  
28.
  • Mangini, Fabio, et al. (författare)
  • Detection and attribution of intra-annual mass component of sea-level variations along the Norwegian coast
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable sea-level observations in coastal regions are needed to assess the impact of sea level on coastal communities and ecosystems. This paper evaluates the ability of in-situ and remote sensing instruments to monitor and help explain the mass component of sea level along the coast of Norway. The general agreement between three different GRACE/GRACE-FO mascon solutions and a combination of satellite altimetry and hydrography gives us confidence to explore the mass component of sea level in coastal areas on intra-annual timescales. At first, the estimates reveal a large spatial-scale coherence of the sea-level mass component on the shelf, which agrees with Ekman theory. Then, they suggest a link between the mass component of sea level and the along-slope wind stress integrated along the eastern boundary of the North Atlantic, which agrees with the theory of poleward propagating coastal trapped waves. These results highlight the potential of the sea-level mass component from GRACE and GRACE-FO, satellite altimetry and the hydrographic stations over the Norwegian shelf. Moreover, they indicate that GRACE and GRACE-FO can be used to monitor and understand the intra-annual variability of the mass component of sea level in the coastal ocean, especially where in-situ measurements are sparse or absent.
  •  
29.
  • Mangini, Fabio, et al. (författare)
  • The relationship between the eddy-driven jet stream and northern European sea level variability
  • 2021
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 73:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Wintertime sea level variability over the northern European continental shelf is largely wind-driven. Using daily gridded sea level anomaly from altimetry, we examine both the spatial and the temporal relationship between northern European sea level variability and large-scale atmospheric circulation patterns as represented by the jet cluster paradigm. The jet clusters represent different configurations of the eddy-driven jet stream and, therefore, provide a physical description of the atmospheric variability in the North Atlantic. We find that each of the four jet clusters is associated with a distinct northern European sea level anomaly pattern whose magnitudes are comparable to those of typical sea level variations on the shelf. In certain locations, such as the German Bight and the east coast of England, sea level anomalies are mainly associated with one single jet cluster. In other locations, such as the interior and the northern part of the North Sea, sea level anomalies are found to be sensitive to at least two jet configurations. Based on these regional sea level variations, we map out the locations on the shelf where each jet cluster or combination of clusters is most active before discussing the role of Ekman transport in inducing the resulting patterns. Through a multiple linear regression model, we also find that the jet clusters reconstruct up to 50% of the monthly mean sea level anomaly variance over the northern European continental shelf. The model best performs in the interior and the western part of the North Sea, suggesting that wind direction rather than wind speed plays a more prominent role over these regions. We conclude that the jet cluster approach gives valuable new insights compared to linear regression techniques for characterising wind-driven sea level variability over the northern European continental shelf.
  •  
30.
  • Pausata, Francesco S. R., et al. (författare)
  • Greening of the Sahara suppressed ENSO activity during the mid-Holocene
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of the El Nino-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.
  •  
31.
  • Pausata, Francesco S. R., et al. (författare)
  • Impacts of high-latitude volcanic eruptions on ENSO and AMOC
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:45, s. 13784-13788
  • Tidskriftsartikel (refereegranskat)abstract
    • Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Nino-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Nino-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Nino-Southern Oscillation (ENSO).
  •  
32.
  • Post, Søren, et al. (författare)
  • Subpolar gyre and temperature drive boreal fish abundance in Greenland waters
  • 2021
  • Ingår i: Fish and Fisheries. - : Wiley. - 1467-2960 .- 1467-2979. ; 22:1, s. 161-174
  • Tidskriftsartikel (refereegranskat)abstract
    • As result of ocean warming, marine boreal species have shifted their distribution poleward, with increases in abundance at higher latitudes, and declines in abundance at lower latitudes. A key to predict future changes in fish communities is to understand how fish stocks respond to climate variability. Scattered field observations in the first half of the 20th century suggested that boreal fish may coherently invade Greenland waters when temperatures rise, but this hypothesis has remained untested. Therefore, we studied how local temperature variability and the dynamics of the subpolar gyre, a large-scale driver of oceanic conditions in the North Atlantic, affect abundance of boreal fishes in a region that sharply defines their lower thermal boundary. We analysed information from demersal trawl surveys from 1981 to 2017, for species distributed from shallow shelf to depths of 1,500 m, collected at over 10,000 stations along similar to 3,000 km of Greenland. Our results show that local temperature and variability of Labrador and Irminger Sea water in the subpolar gyre region drive interdecadal variability of boreal fish abundance in Greenland waters. Although temperature fluctuations were higher in shallow than deep regions, fish abundance changed as quickly in great depths as in shallow depths. This link between physics and biology provides an opportunity for prediction of future trends, which is of utility in Greenland, where fisheries constitute more than 90% of the national export value.
  •  
33.
  • Raj, Roshin P., et al. (författare)
  • The Lofoten Vortex of the Nordic Seas
  • 2015
  • Ingår i: Deep Sea Research Part I. - : Elsevier BV. - 0967-0637 .- 1879-0119. ; 96, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lofoten Basin is the largest reservoir of ocean heat in the Nordic Seas. A particular feature of the basin is 'the Lofoten Vortex', a most anomalous mesoscale structure in the Nordic Seas. The vortex resides in one of the major winter convection sites in the Norwegian Sea, and is likely to influence the dense water formation of the region. Here, we document this quasi-permanent anticyclonic vortex using hydrographic and satellite observations. The vortex' uniqueness in the Nordic Seas, its surface characteristics on seasonal, inter-annual, and climatological time-scales, are examined together with the main forcing mechanisms acting on it. The influence of the vortex on the hydrography of the Lofoten Basin is also shown. We show that the Atlantic Water in the Nordic Seas penetrate the deepest inside the Lofoten Vortex, and confirm the persistent existence of the vortex in the deepest part of the Lofoten Basin, its dominant cyclonic drift and reveal seasonality in its eddy intensity with maximum during late winter and minimum during late autumn. Eddy merging processes are studied in detail, and mergers by eddies from the slope current are found to provide anticyclonic vorticity to the Lofoten Vortex.
  •  
34.
  •  
35.
  • Reverdin, Gilles, et al. (författare)
  • North Atlantic extratropical and subpolar gyre variability during the last 120 years : a gridded dataset of surface temperature, salinity, and density. Part 1: dataset validation and RMS variability
  • 2019
  • Ingår i: Ocean Dynamics. - : Springer Science and Business Media LLC. - 1616-7341 .- 1616-7228. ; 69:3, s. 385-403
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a binned annual product (BINS) of sea surface temperature (SST), sea surface salinity (SSS), and sea surface density (SSD) observations for 1896–2015 of the subpolar North Atlantic between 40° N and 70° N, mostly excluding the shelf areas. The product of bin averages over spatial scales on the order of 200 to 500 km, reproducing most of the interannual variability in different time series covering at least the last three decades or of the along-track ship monitoring. Comparisons with other SSS and SST gridded products available since 1950 suggest that BINS captures the large decadal to multidecadal variability. Comparison with the HadSST3 SST product since 1896 also indicates that the decadal and multidecadal variability is usually well-reproduced, with small differences in long-term trends or in areas with marginal data coverage in either of the two products. Outside of the Labrador Sea and Greenland margins, interannual variability is rather similar in different seasons. Variability at periods longer than 15 years is a large part of the total interannual variability, both for SST and SSS, except possibly in the south-western part of the domain. Variability in SST and SSS increases towards the west, with the contribution of salinity variability to density dominating that of temperature in the western Atlantic, except close to the Gulf Stream and North Atlantic Current in the southwest area. Weaker variability and larger relative temperature contributions to density changes are found in the eastern part of the gyre and south of Iceland.
  •  
36.
  • Roquet, Fabien, et al. (författare)
  • Estimates of the Southern Ocean general circulation improved by animal-borne instruments
  • 2013
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 40:23, s. 6176-6180
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decade, several hundred seals have been equipped with conductivity-temperature-depth sensors in the Southern Ocean for both biological and physical oceanographic studies. A calibrated collection of seal-derived hydrographic data is now available, consisting of more than 165,000 profiles. The value of these hydrographic data within the existing Southern Ocean observing system is demonstrated herein by conducting two state estimation experiments, differing only in the use or not of seal data to constrain the system. Including seal-derived data substantially modifies the estimated surface mixed-layer properties and circulation patterns within and south of the Antarctic Circumpolar Current. Agreement with independent satellite observations of sea ice concentration is improved, especially along the East Antarctic shelf. Instrumented animals efficiently reduce a critical observational gap, and their contribution to monitoring polar climate variability will continue to grow as data accuracy and spatial coverage increase.
  •  
37.
  • Rossby, T., et al. (författare)
  • What can Hydrography Tell Us About the Strength of the Nordic Seas MOC Over the Last 70 to 100 Years?
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The flow of warm water into the Nordic Seas plays an important role for the mild climate of central and northern Europe. Here we estimate the stability of this flow thanks to the extensive hydrographic record that dates back to the early 1900s. Using all casts in two areas with little mean flow just south and north of the Greenland-Scotland Ridge that bracket the two main inflow branches, we find a well-defined approximately 0.5 Sv volume transport (and a corresponding 30 TW heat flux) variation in synchrony with the Atlantic multidecadal variability that peaked most recently around 2010 and is now trending down. No evidence is found for a long-term trend in transport over the last 70 to 100 years. Plain Language Summary Society has been much concerned about the possibility of the slow-down of what is popularly known as the Gulf Stream and its transport of warm water to high latitudes of the North Atlantic. Were this to happen it is generally understood that the climate of central and northern Europe would turn distinctly colder. Direct measurements of the warm water flow toward the Nordic Seas and cold water flowing back into the deep North Atlantic show no change over the last couple of decades. To reach further back in time we have considerable information about the hydrographic state of the North Atlantic and Nordic Seas since the early 1900s. By examining the difference in sea level between the North Atlantic and Norwegian Sea we find a similar to 70-year variation in volume and heat transport that is clearly associated with the Atlantic multidecadal variation. It peaked most recently around 2010 and is now trending down. We note that the Atlantic multidecadal variation accounts for the observed variations so well we find no evidence for a longer-term increase or decrease in transport.
  •  
38.
  • Sanchez-Franks, A., et al. (författare)
  • The Irminger Gyre as a Key Driver of the Subpolar North Atlantic Overturning
  • 2024
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The lower limb of the Atlantic meridional overturning circulation (AMOC) is the equatorward flow of dense waters formed through the cooling and freshening of the poleward-flowing upper limb. In the subpolar North Atlantic (SPNA), upper limb variability is primarily set by the North Atlantic Current, whereas lower limb variability is less well understood. Using observations from a SPNA mooring array, we show that variability of the AMOC's lower limb is connected to poleward flow in the interior Irminger Sea. We identify this poleward flow as the northward branch of the Irminger Gyre (IG), accounting for 55% of the AMOC's lower limb variability. Over 2014-2018, wind stress curl fluctuations over the Labrador and Irminger Seas drive this IG and AMOC variability. On longer (>annual) timescales, however, an increasing trend in the thickness of intermediate water, from 2014 to 2020, within the Irminger Sea coincides with a decreasing trend in IG strength.
  •  
39.
  • Sriver, Ryan L., et al. (författare)
  • Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model
  • 2013
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 4:1, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical cyclones (TCs) actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air–sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western North Pacific region, corresponding to events in 2003, excite a combination of Kelvin and Yanai waves in the equatorial Pacific. The resultant thermocline adjustment significantly modifies the thermal structure of the upper equatorial Pacific and leads to eastward zonal heat transport. Observations of upper-ocean temperature by the Tropical Atmosphere Ocean (TAO) buoy array and sea-level height anomalies using altimetry reveal wave passage during the same time period with similar properties to the modeled wave, although our idealized model methodology disallows precise identification of the TC forcing with the observed waves. Results indicate that direct oceanographic forcing by TCs may be important for understanding the spectrum of equatorial ocean waves, thus remotely influencing tropical mixing and surface energy budgets. Because equatorial Kelvin waves are closely linked to interannual variability in the tropical Pacific, these findings also suggest TC wind forcing may influence the timing and amplitude of El Niño events.
  •  
40.
  • Wang, Tongmei, et al. (författare)
  • Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements
  • 2018
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable Water Isotopologues (SWIs) are important diagnostic tracers for understanding processes in the atmosphere and the global hydrological cycle. Using eight years (2002-2009) of retrievals from Odin/SMR (Sub-Millimetre Radiometer), the global climatological features of three SWIs, (H2O)-O-16, HDO and (H2O)-O-18, the isotopic composition D and O-18 in the stratosphere are analysed for the first time. Spatially, SWIs are found to increase with altitude due to stratospheric methane oxidation. In the tropics, highly depleted SWIs in the lower stratosphere indicate the effect of dehydration when the air comes through the cold tropopause, while, at higher latitudes, more enriched SWIs in the upper stratosphere during summer are produced and transported to the other hemisphere via the Brewer-Dobson circulation. Furthermore, we found that more (H2O)-O-16 is produced over summer Northern Hemisphere and more HDO is produced over summer Southern Hemisphere. Temporally, a tape recorder in (H2O)-O-16 is observed in the lower tropical stratosphere, in addition to a pronounced downward propagating seasonal signal in SWIs from the upper to the lower stratosphere over the polar regions. These observed features in SWIs are further compared to SWI-enabled model outputs. This helped to identify possible causes of model deficiencies in reproducing main stratospheric features. For instance, choosing a better advection scheme and including methane oxidation process in a specific model immediately capture the main features of stratospheric water vapor. The representation of other features, such as the observed inter-hemispheric difference of isotopic component, is also discussed.
  •  
41.
  • Årthun, Marius, et al. (författare)
  • Future strengthening of the Nordic Seas overturning circulation
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The overturning circulation in the Nordic Seas involves the transformation of warm Atlantic waters into cold, dense overflows. These overflow waters return to the North Atlantic and form the headwaters to the deep limb of the Atlantic meridional overturning circulation (AMOC). The Nordic Seas are thus a key component of the AMOC. However, little is known about the response of the overturning circulation in the Nordic Seas to future climate change. Here we show using global climate models that, in contrast to the North Atlantic, the simulated density-space overturning circulation in the Nordic Seas increases throughout most of the 21st century as a result of enhanced horizontal circulation and a strengthened zonal density gradient. The increased Nordic Seas overturning is furthermore manifested in the overturning circulation in the eastern subpolar North Atlantic. A strengthened Nordic Seas overturning circulation could therefore be a stabilizing factor in the future AMOC.
  •  
42.
  • Årthun, Marius, et al. (författare)
  • Mechanisms of Decadal North Atlantic Climate Variability and Implications for the Recent Cold Anomaly
  • 2021
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 34:9, s. 3421-3439
  • Tidskriftsartikel (refereegranskat)abstract
    • Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-42 av 42
Typ av publikation
tidskriftsartikel (36)
doktorsavhandling (3)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Chafik, Léon (28)
Chafik, Léon, 1985- (12)
Zhang, Qiong (5)
Nilsson, Johan (4)
Reverdin, Gilles (4)
Lundberg, Peter (2)
visa fler...
Pausata, Francesco S ... (2)
Nilsson, Johan, 1965 ... (2)
Becker, M (1)
Nilsson, J. (1)
Olsen, A (1)
Zhang, Peng (1)
Wilkinson, Jeremy (1)
Li, F. (1)
Linderholm, Hans W., ... (1)
Chen, Deliang, 1961 (1)
de Boer, Agatha M. (1)
Weyhenmeyer, Gesa A. (1)
Sjolte, Jesper (1)
Björck, Svante (1)
Seneviratne, S. I. (1)
Schenk, Frederik (1)
Muschitiello, France ... (1)
Schrum, Corinna (1)
May, Wilhelm (1)
Allard, Bert, 1945- (1)
Gaillard, Marie-José ... (1)
Körnich, Heiner (1)
Caballero, Rodrigo (1)
Sahlée, Erik (1)
Rutgersson, Anna, 19 ... (1)
Stigebrandt, Anders, ... (1)
Kjellström, Erik (1)
Murtagh, Donal, 1959 (1)
Evans, D G (1)
Goni, Gustavo (1)
Hamlington, Benjamin ... (1)
Arunraj, Kondetharay ... (1)
Berg, P. (1)
Sporre, Moa K. (1)
Guinet, Christophe (1)
Ou, Tinghai (1)
Battisti, David S. (1)
Johannessen, T. (1)
Jansen, Teunis (1)
Rodhe, Henning (1)
Nycander, Jonas, Pro ... (1)
Berntell, Ellen (1)
Frajka-Williams, Ele ... (1)
Harada, Yayoi (1)
visa färre...
Lärosäte
Stockholms universitet (42)
Göteborgs universitet (1)
Uppsala universitet (1)
Örebro universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (41)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy