SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chakaroun R) "

Sökning: WFRF:(Chakaroun R)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vieira-Silva, S., et al. (författare)
  • Statin therapy is associated with lower prevalence of gut microbiota dysbiosis
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 581:7808, s. 310-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiome community typing analyses have recently identified the Bacteroides2 (Bact2) enterotype, an intestinal microbiota configuration that is associated with systemic inflammation and has a high prevalence in loose stools in humans1,2. Bact2 is characterized by a high proportion of Bacteroides, a low proportion of Faecalibacterium and low microbial cell densities1,2, and its prevalence varies from 13% in a general population cohort to as high as 78% in patients with inflammatory bowel disease2. Reported changes in stool consistency3 and inflammation status4 during the progression towards obesity and metabolic comorbidities led us to propose that these developments might similarly correlate with an increased prevalence of the potentially dysbiotic Bact2 enterotype. Here, by exploring obesity-associated microbiota alterations in the quantitative faecal metagenomes of the cross-sectional MetaCardis Body Mass Index Spectrum cohort (n=888), we identify statin therapy as a key covariate of microbiome diversification. By focusing on a subcohort of participants that are not medicated with statins, we find that the prevalence of Bact2 correlates with body mass index, increasing from 3.90% in lean or overweight participants to 17.73% in obese participants. Systemic inflammation levels in Bact2-enterotyped individuals are higher than predicted on the basis of their obesity status, indicative of Bact2 as a dysbiotic microbiome constellation. We also observe that obesity-associated microbiota dysbiosis is negatively associated with statin treatment, resulting in a lower Bact2 prevalence of 5.88% in statin-medicated obese participants. This finding is validated in both the accompanying MetaCardis cardiovascular disease dataset (n = 282) and the independent Flemish Gut Flora Project population cohort (n=2,345). The potential benefits of statins in this context will require further evaluation in a prospective clinical trial to ascertain whether the effect is reproducible in a randomized population and before considering their application as microbiota-modulating therapeutics. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
2.
  • Fromentin, S., et al. (författare)
  • Microbiome and metabolome features of the cardiometabolic disease spectrum
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28:2, s. 303-314
  • Tidskriftsartikel (refereegranskat)abstract
    • By studying individuals along a spectrum of cardiometabolic disease and adjusting for effects of lifestyle and medication, this investigation identifies alterations of the metabolome and microbiome from dysmetabolic conditions, such as obesity and type 2 diabetes, to ischemic heart disease. Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages-acute coronary syndrome, chronic IHD and IHD with heart failure-and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.
  •  
3.
  • Bel Lassen, P., et al. (författare)
  • Protein intake, metabolic status and the gut microbiota in different ethnicities: Results from two independent cohorts
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Protein intake has been associated with the development of pre-diabetes (pre-T2D) and type 2 diabetes (T2D). The gut microbiota has the capacity to produce harmful metabolites derived from dietary protein. Furthermore, both the gut microbiota composition and metabolic status (e.g., insulin resistance) can be modulated by diet and ethnicity. However, to date most studies have predominantly focused on carbohydrate and fiber intake with regards to metabolic status and gut microbiota composition. Objectives: To determine the associations between dietary protein intake, gut microbiota composition, and metabolic status in different ethnicities. Methods: Separate cross-sectional analysis of two European cohorts (MetaCardis, n = 1759; HELIUS, n = 1528) including controls, patients with pre-T2D, and patients with T2D of Caucasian/non-Caucasian origin with nutritional data obtained from Food Frequency Questionnaires and gut microbiota composition. Results: In both cohorts, animal (but not plant) protein intake was associated with pre-T2D status and T2D status after adjustment for confounders. There was no significant association between protein intake (total, animal, or plant) with either gut microbiota alpha diversity or beta diversity, regardless of ethnicity. At the species level, we identified taxonomical signatures associated with animal protein intake that overlapped in both cohorts with different abundances according to metabolic status and ethnicity. Conclusions: Animal protein intake is associated with pre-T2D and T2D status but not with gut microbiota beta or alpha diversity, regardless of ethnicity. Gut microbial taxonomical signatures were identified, which could function as potential modulators in the association between dietary protein intake and metabolic status. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
4.
  • Belda, E., et al. (författare)
  • Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism
  • 2022
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 71:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity.
  •  
5.
  • Krieg, L, et al. (författare)
  • Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance
  • 2022
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 71:11, s. 2179-2193
  • Tidskriftsartikel (refereegranskat)abstract
    • Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism.DesignMesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR.ResultsWhile mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels.ConclusionMulti-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.
  •  
6.
  • Medawar, E., et al. (författare)
  • Prebiotic diet changes neural correlates of food decision-making in overweight adults: a randomised controlled within-subject cross-over trial
  • 2024
  • Ingår i: Gut. - 0017-5749. ; 73:2, s. 298-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Animal studies suggest that prebiotic, plant-derived nutrients could improve homoeostatic and hedonic brain functions through improvements in microbiome-gut-brain communication. However, little is known if these results are applicable to humans. Therefore, we tested the effects of high-dosed prebiotic fibre on reward-related food decision-making in a randomised controlled within-subject cross-over study and assayed potential microbial and metabolic markers.Design 59 overweight young adults (19 females, 18-42 years, body mass index 25-30 kg/m(2)) underwent functional task MRI before and after 14 days of supplementary intake of 30 g/day of inulin (prebiotics) and equicaloric placebo, respectively. Short chain fatty acids (SCFA), gastrointestinal hormones, glucose/lipid and inflammatory markers were assayed in fasting blood. Gut microbiota and SCFA were measured in stool.Results Compared with placebo, participants showed decreased brain activation towards high-caloric wanted food stimuli in the ventral tegmental area and right orbitofrontal cortex after prebiotics (preregistered, family wise error-corrected p <0.05). While fasting blood levels remained largely unchanged, 16S-rRNA sequencing showed significant shifts in the microbiome towards increased occurrence of, among others, SCFA-producing Bifidobacteriaceae, and changes in >60 predicted functional signalling pathways after prebiotic intake. Changes in brain activation correlated with changes in Actinobacteria microbial abundance and associated activity previously linked with SCFA production, such as ABC transporter metabolism.Conclusions In this proof-of-concept study, a prebiotic intervention attenuated reward-related brain activation during food decision-making, paralleled by shifts in gut microbiota.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy