SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Challis P.) "

Sökning: WFRF:(Challis P.)

  • Resultat 1-50 av 141
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
2.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
24.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
29.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
30.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
31.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
32.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
33.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
34.
  • Sliz, E., et al. (författare)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
35.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
36.
  • Tabassum, R, et al. (författare)
  • Genetic architecture of human plasma lipidome and its link to cardiovascular disease
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4329-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
  •  
37.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104008-
  • Tidskriftsartikel (refereegranskat)abstract
    • New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.
  •  
38.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST
  • 2009
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104017-
  • Tidskriftsartikel (refereegranskat)abstract
    • Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P-NBI <= 3.8 MW H-mode at I-P = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I-P and more strongly with B-t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P-phi approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E-r, show that the position of steepest gradients in electron pressure and E-r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T-e pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.
  •  
39.
  • Beurskens, M, et al. (författare)
  • L-H power Threshold, Pedestal Stability and Confinement in JET with a Metallic Wall
  • 2012
  • Ingår i: 24th IAEA Fusion Energy Conference, 8-13 October 2012. ; , s. EX/P4-23-
  • Konferensbidrag (refereegranskat)abstract
    • After the change-over from the Carbon-Fibre Composite (CFC) wall to an ITER-like metallic wall (ILW) the baseline type I ELMy H-mode scenario has been re-established in JET with the new plasma-facing materials Be and W. A key finding for ITER is that the power required to enter H-mode has reduced with respect to that in JET with the CFC wall. In JET with the ILW the power threshold to enter H-mode (PL-H) is below the international L-H power threshold scaling P_Martin-08. The minimum threshold is P_L-H=1.8MW compared to P_Martin-08=4MW with a pedestal density of nped=2x10^19m^-3 in plasmas with I_p=2.0 MA, B_t=2.4T. However the threshold depends strongly on density; using slow ion cyclotron heating (ICRH) power ramps P_L-H varies from 1.8 to 4.5MW in a range of lower and upper plasma triangularity (delta_L=0.32-0.4, delta_U =0.19-0.38). Stationary Type I ELMy H-mode operation has been re-established at both low and high triangularity with I_p≤ 2.5MA, q_95=2.8-3.6 and H_98≤1. The achieved plasma collisionality is relatively high, in the range of 1< nu_eff<4 due to the required strong gas dosing. Stability analysis with the linear MHD stability code ELITE show that the pedestal is marginally unstable with respect to the Peeling Ballooning boundary. Due to the stabilising effect of the global pressure Beta_N on the pedestal stability, a strong coupling between core and edge confinement is expected. Indeed in an H-mode profile database comparison with 119 CFC- (0.1< nu_eff<1) and 40 ILW-H-modes a strong coupling of the core versus edge confinement is found, independent of wall material. In addition, the pedestal predictions using the EPED predictive pedestal code coincide with the measured pedestal height over a wide range of normalised pressure 1.5< Beta_N<3.5. Due to the strong core-edge coupling, beneficial effects of core profile peaking on confinement are weak in the database comparison. However, differences in the individual temperature and density profile peaking occur across the database. When collisionality is increased from nu_eff=0.1 to 4, the density peaking decreases from R/L_ne=4 to 0.5 but is compensated by an increase in temperature peaking from R/L_Te = 5-8, offering a challenge for micro turbulence-transport models.
  •  
40.
  • Hobirk, J., et al. (författare)
  • Improved confinement in JET hybrid discharges
  • 2009
  • Ingår i: 36th EPS Conference on Plasma Physics 2009, EPS 2009 - Europhysics Conference Abstracts. - 9781622763368 ; , s. 150-153
  • Konferensbidrag (refereegranskat)
  •  
41.
  • Hobirk, J., et al. (författare)
  • Improved confinement in JET hybrid discharges
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:9, s. 095001-
  • Tidskriftsartikel (refereegranskat)abstract
    • A new technique has been developed to produce plasmas with improved confinement relative to the H 98,y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H 98,y2=1.35) and good stability (β N3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H 98,y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.
  •  
42.
  • Lunnan, R., et al. (författare)
  • PS1-14bj : A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 831:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometry and spectroscopy of PS1-14bj, a hydrogen-poor superluminous supernova (SLSN) at redshift z = 0.5215 discovered in the last months of the Pan-STARRS1 Medium Deep Survey. PS1-14bj stands out because of its extremely slow evolution, with an observed rise of greater than or similar to 125 rest-frame days, and exponential decline out to similar to 250 days past peak at a measured rate of 0.01 mag day(-1), consistent with fully trapped Co-56 decay. This is the longest rise time measured in an SLSN to date, and the first SLSN to show a rise time consistent with pair-instability supernova (PISN) models. Compared to other slowly evolving SLSNe, it is spectroscopically similar to the prototype SN 2007bi at maximum light, although lower in luminosity (L-peak similar or equal to 4.6 x 10(43) erg s(-1) ) and with a flatter peak than previous events. PS1-14bj shows a number of peculiar properties, including a near-constant color temperature for > 200 days past peak, and strong emission lines from [O III] lambda 5007 and [O III] lambda 4363 with a velocity width of similar to 3400 km s(-1) in its late-time spectra. These both suggest there is a sustained source of heating over very long timescales, and are incompatible with a simple Ni-56-powered/PISN interpretation. A modified magnetar model including emission leakage at late times can reproduce the light curve, in which case the blue continuum and [O III] features are interpreted as material heated and ionized by the inner pulsar wind nebula becoming visible at late times. Alternatively, the late-time heating could be due to interaction with a shell of H-poor circumstellar material.
  •  
43.
  • Beurskens, M. N. A., et al. (författare)
  • Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:1, s. 013001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ∼ 1.5-2, H98 ∼ 1, whereas the hybrid plasmas have βN ∼ 2.5-3, H98 < 1.5. The database study contains both low- (δ ∼ 0.2-0.25) and high-triangularity (δ ∼ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ∼ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.
  •  
44.
  • Beurskens, M. N. A., et al. (författare)
  • Global and pedestal confinement in JET with a Be/W metallic wall
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:4, s. 043001-
  • Tidskriftsartikel (refereegranskat)abstract
    • Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I-type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H-98(y,H- 2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILWcompared to JET-C at low power fractions Ploss/P-thr,(08)< 2 (where P-loss is (P-in-dW/dt), and P-thr,(08) the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At Ploss/P-thr,P- 08 > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H-98((y, 2)) = 0.8 is obtained, compared to H-98((y, 2)) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H-98((y, 2)) <= 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2ms from typically 200 mu s in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured p(ped))/(predicted p(ped), EPED) < 1.2, but that the role of triangularity is generally weaker in the JET-ILW experimental data than in the model predictions.
  •  
45.
  • Gall, C., et al. (författare)
  • Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404 : SN 2007on and SN 2011iv
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B-and H-band magnitudes di ff er by similar to 0.60 mag and similar to 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that di ff er by similar to 14% and similar to 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, Ni-56 production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the di ff erences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on.
  •  
46.
  • Hobirk, J., et al. (författare)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
47.
  • Joffrin, E., et al. (författare)
  • Impact of divertor geometry on H-mode confinement in the JET metallic wall
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experiments with the ITER-like wall have demonstrated that changes in divertor strike point position are correlated with strong modification of the global energy confinement. The impact on energy confinement is observable both on the pedestal confinement and core normalised gradients. The corner configuration shows an increased core density gradient length and ion pressure indicating a better ion confinement. The study of neutral re-circulation indicates the neutral pressure in the main chamber varies inversely with the energy confinement and a correlation between the pedestal total pressure and the neutral pressure in the main chamber can be established. It does not appear that charge exchange losses nor momentum losses could explain this effect, but it may be that changes in edge electric potential are playing a role at the plasma edge. This study emphasizes the importance of the scrape-off layer (SOL) conditions on the pedestal and core confinement.
  •  
48.
  • Larsson, Josefin, et al. (författare)
  • X-ray illumination of the ejecta of supernova 1987A
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 474:7352, s. 484-486
  • Tidskriftsartikel (refereegranskat)abstract
    • When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily (56)Ni, (57)Ni and (44)Ti-are produced(1). After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements(2). However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium(3). The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.
  •  
49.
  • Lerche, E., et al. (författare)
  • Optimization of ICRH for core impurity control in JET-ILW
  • 2016
  • Ingår i: Nuclear Fusion. - JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. [Lerche, E.; Van Eester, D.; Crombe, K.; Kazakov, Y.; Krivska, A.; Ongena, J.] TEC Partner, Assoc EUROFUS Belgian State, LPP ERM KMS, Brussels, Belgium. [Lerche, E.; Jacquet, P.; Giroud, C.; Monakhov, I.; Casson, F. J.; Rimini, F.; Blackman, T.; Brix, M.; Challis, C.; Graham, M.; Kiptily, V.; Lennholm, M.; Lomas, P.; Maggi, C.; Mathews, G.; Mayoral, M. -L.; Santala, M.; Shaw, A.; Stamp, M.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Goniche, M.; Colas, L.; Fedorczak, N.; Joffrin, E.; Monier-Garbet, P.] Assoc EUROFUS CEA, IRFM, St Paul Les Durance, France. [Bobkov, V.; Angioni, C.; Hobirk, J.; Puetterich, T.; Reich, M.] EUROFUS Assoziat, Max Planck Inst Plasmaphys, Garching, Germany. [Baruzzo, M.] EUROFUS ENEA Assoc, Consorzio RFX, Padua, Italy. [Brezinsek, S.] TEC Partner, EUROFUS Assoziat, Forschungszentrum Juelich, Julich, Germany. [Czarnecka, A.] EUROFUS Assoc, IPPLM, Warsaw, Poland. [Eriksson, J.] Uppsala Univ, Dept Phys & Astron, Assoc EUROFUS VR, Uppsala, Sweden. [Graves, J. P.] Assoc EUROFUS Confederat Suisse, CRPP EPFL, Lausanne, Switzerland. [Gorini, G.; Mantica, P.; Nocente, M.; Tardocchi, M.; Valisa, M.] EUROFUS ENEA CNR Assoc, Inst Fis Plasma, Milan, Italy. [Johnson, T.] KTH, EES, Fus Plasma Phys, Assoc EUROFUS VR, Stockholm, Sweden. [Meneses, L.; Nave, M. F.; Nunes, I.] EUROFUS IST Assoc, Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Mlynar, J.; Petrzilka, V.] EUROFUS IPP CR Assoc, Inst Plasma Phys, Prague, Czech Republic. [Petravich, G.] EUROFUS Assoc, MTA Wigner FK RMI, Budapest, Hungary. [Solano, E. R.] EUROFUS Assoc, LNF CIEMAT, Madrid, Spain. [Solano, E. R.] Culham Sci Ctr, EUROfus PMU, Abingdon OX14 3DB, Oxon, England. [Sips, G.] Culham Sci Ctr, JET Exploitat Unit, Abingdon OX14 3DB, Oxon, England. [Tsalas, M.] EUROFUS Assoc, FOM Inst DIFFER, Nieuwegein, Netherlands. : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 56:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.
  •  
50.
  • Levesque, E. M., et al. (författare)
  • THE HIGH-METALLICITY EXPLOSION ENVIRONMENT OF THE RELATIVISTIC SUPERNOVA 2009bb
  • 2010
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 709:1, s. l26-L31
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the environment of the nearby (d approximate to 40 Mpc) broad-lined Type Ic supernova (SN) 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of interstellar medium properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7 Z(circle dot) and 3.5 Z(circle dot), in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb's unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 141
Typ av publikation
tidskriftsartikel (114)
konferensbidrag (16)
forskningsöversikt (10)
annan publikation (1)
Typ av innehåll
refereegranskat (138)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Joffrin, E (65)
Hobirk, J (64)
Giroud, C (60)
Frassinetti, Lorenzo (53)
Mantica, P (51)
Saarelma, S (51)
visa fler...
Mailloux, J (48)
Lerche, E (47)
Buratti, P (46)
de la Luna, E (46)
Angioni, C (44)
Brezinsek, S (43)
Nunes, I (43)
Neu, R (42)
Van Eester, D (42)
Garcia, J. (41)
Frigione, D (41)
Giovannozzi, E (41)
Kappatou, A (41)
Nocente, M (41)
Baruzzo, M (40)
Valisa, M (40)
Maslov, M. (40)
Groth, M (39)
Zoletnik, S (39)
Alper, B (38)
Bourdelle, C (38)
Delabie, E (38)
Jacquet, P (38)
Salmi, A (38)
Brix, M (37)
Naulin, V (37)
Sozzi, C (37)
Tardocchi, M (37)
Voitsekhovitch, I (37)
Crisanti, F (36)
Flanagan, J (36)
Huber, A (36)
Tsalas, M (36)
Dux, R (35)
Giacomelli, L (35)
Ivanova-Stanik, I (35)
Lehnen, M (35)
Lennholm, M (35)
Ongena, J (35)
Salewski, M (35)
Sauter, O (35)
Zagorski, R (35)
Patel, A (35)
Simpson, J (35)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (82)
Uppsala universitet (45)
Chalmers tekniska högskola (42)
Stockholms universitet (38)
Lunds universitet (5)
Göteborgs universitet (3)
visa fler...
Högskolan i Halmstad (3)
Karolinska Institutet (3)
Umeå universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (141)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (117)
Teknik (18)
Medicin och hälsovetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy