SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chance M.S.) "

Sökning: WFRF:(Chance M.S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2014
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Chu, M.S., et al. (författare)
  • Physics of Plasmas Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks
  • 2004
  • Ingår i: Physics of Plasmas. ; 11, s. 2497-
  • Tidskriftsartikel (refereegranskat)abstract
    • Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode ~RWM!. Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics ~MHDs! and utilizing a normal mode approach ~NMA! @M. S. Chu et al., Nucl. Fusion 43, 441 ~2003!#. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F @Y. Q. Liu et al., Phys. Plasmas 7, 3681 ~2000!# has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor ~ITER! @R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 ~2002!# ~scenario IV for advanced tokamak operation! may be feedback stabilized with babove the no wall limit and up to an increment of ;50% towards the ideal limit. Rotation further improves the stability.
  •  
3.
  • Okabayashi, M., et al. (författare)
  • Control of the resistive wall mode with internal coils in the DIII-D tokamak
  • 2005
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 45:12, s. 1715-1731
  • Tidskriftsartikel (refereegranskat)abstract
    • Internal coils, 'I-Coils', were installed inside the vacuum vessel of the DIII-D device to generate non-axisymmetric magnetic fields to act directly on the plasma. These fields are predicted to stabilize the resistive wall mode (RWM) branch of the long-wavelength external kink mode with plasma beta close to the ideal wall limit. Feedback using these I-Coils was found to be more effective as compared to using external coils located outside the vacuum vessel. Locating the coils inside the vessel allows for a faster response and the coil geometry also allows for better coupling to the helical mode structure. Initial results were reported previously (Strait E.J. et al 2004 Phys. Plasmas 11 2505). This paper reports on results from extended feedback stabilization operations, achieving plasma parameters up to the regime of Cβ ≈ 1.0 and open loop growth rates of γopenτw ≳ 25 where the RWM was predicted to be unstable with only the 'rotational viscous stabilization mechanism'. Here Cβ ≈ (β - βno-wall.limit)/(βideal.wall.limit - βno-wall.limit) is a measure of the beta relative to the stability limits without a wall and with a perfectly conducting wall, and τw is the resistive flux penetration time of the wall. These feedback experimental results clarified the processes of dynamic error field correction and direct RWM stabilization, both of which took place simultaneously during RWM feedback stabilization operation. MARS-F modelling provides a critical rotation velocity in reasonable agreement with the experiment and predicts that the growth rate increases rapidly as rotation decreases below the critical. The MARS-F code also predicted that for successful RWM magnetic feedback, the characteristic time of the power supply should be limited to a fraction of the growth time of the targeted RWM. The possibility of further improvements in the presently achievable range of operation of feedback gain values is also discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy