SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chang Jian 1990 ) "

Sökning: WFRF:(Chang Jian 1990 )

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pang, Kanglei, 1993-, et al. (författare)
  • Redirecting configuration of atomically dispersed selenium catalytic sites for efficient hydrazine oxidation
  • 2024
  • Ingår i: Matter. - 2590-2393 .- 2590-2385. ; 7:2, s. 655-667
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the reconstruction of surface sites is crucial for gaining insights into the true active sites and catalytic mechanisms. While extensive research has been conducted on reconstruction behaviors of atomically dispersed metallic catalytic sites, limited attention has been paid to non-metallic ones despite their potential catalytic activity comparable or even superior to their noble-metal counterpart. Herein, we report a carbonaceous, atomically dispersed non-metallic selenium catalyst that displayed exceptional catalytic activity in the hydrazine oxidation reaction (HzOR) in alkaline media, outperforming the noble-metal Pt catalysts. In situ X-ray absorption spectroscopy (XAS) and Fourier transform infrared spectroscopy revealed that the pristine SeC4 site pre-adsorbs an ∗OH ligand, followed by HzOR occurring on the other side of the OH–SeC4. Theoretical calculations proposed that the pre-adsorbed ∗OH group pulls electrons from the Se site, resulting in a more positively charged Se and a higher polarity of Se–C bonds, thereby enhancing surface reactivity toward HzO/R.
  •  
2.
  • Chang, Jian, 1990-, et al. (författare)
  • MXene/Cellulose Composite Cloth for Integrated Functions (if-Cloth) in Personal Heating and Steam Generation
  • 2024
  • Ingår i: Advanced fiber materials. - 2524-7921. ; 6:1, s. 252-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the abundant solar light available on our planet, it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy-efficient manner. In this study, we present the fabrication of a photothermally active, biodegradable composite cloth composed of titanium carbide MXene and cellulose, achieved through an electrospinning method. This composite cloth exhibits favorable attributes, including chemical stability, mechanical performance, structural flexibility, and wettability. Notably, our 0.1-mm-thick composite cloth (RC/MXene IV) raises the temperature of simulated skin by 5.6 degrees C when compared to a commercially available cotton cloth, which is five times thicker under identical ambient conditions. Remarkably, the composite cloth (RC/MXene V) demonstrates heightened solar light capture efficiency (87.7%) when in a wet state instead of a dry state. Consequently, this cloth functions exceptionally well as a high-performance steam generator, boasting a superior water evaporation rate of 1.34 kg m(-2) h(-1) under one-sun irradiation (equivalent to 1000 W m(-2)). Moreover, it maintains its performance excellence in solar desalination processes. The multifunctionality of these cloths opens doors to a diverse array of outdoor applications, including solar-driven water evaporation and personal heating, thereby enriching the scope of integrated functionalities for textiles.
  •  
3.
  • Chang, Jian, 1990-, et al. (författare)
  • Tailor-Made White Photothermal Fabrics : A Bridge between Pragmatism and Aesthetic
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 35:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintaining human thermal comfort in the cold outdoors is crucial for diverse outdoor activities, e.g., sports and recreation, healthcare, and special occupations. To date, advanced clothes are employed to collect solar energy as a heat source to stand cold climates, while their dull dark photothermal coating may hinder pragmatism in outdoor environments and visual sense considering fashion. Herein, tailor-made white webs with strong photothermal effect are proposed. With the embedding of cesium–tungsten bronze (CsxWO3) nanoparticles (NPs) as additive inside nylon nanofibers, these webs are capable of drawing both near-infrared (NIR) and ultraviolet (UV) light in sunlight for heating. Their exceptional photothermal conversion capability enables 2.5–10.5 °C greater warmth than that of a commercial sweatshirt of six times greater thickness under different climates. Remarkably, this smart fabric can increase its photothermal conversion efficiency in a wet state. It is optimal for fast sweat or water evaporation at human comfort temperature (38.5 °C) under sunlight, and its role in thermoregulation is equally important to avoid excess heat loss in wilderness survival. Obviously, this smart web with considerable merits of shape retention, softness, safety, breathability, washability, and on-demand coloration provides a revolutionary solution to realize energy-saving outdoor thermoregulation and simultaneously satisfy the needs of fashion and aesthetics.
  •  
4.
  • Khorsand Kheirabad, Atefeh, 1991-, et al. (författare)
  • Ice-Assisted Porous Poly(ionic liquid)/MXene Composite Membranes for Solar Steam Generation
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - 1944-8244 .- 1944-8252. ; 15:48, s. 56347-56355
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlled synthesis of polymer-based porous membranes via innovative methods is of considerable interest, yet it remains a challenge. Herein, we established a general approach to fabricate porous polyelectrolyte composite membranes (PPCMs) from poly-(ionic liquid) (PIL) and MXene via an ice-assisted method. This process enabled the formation of a uniformly distributed macroporous structure within the membrane. The unique characteristics of the as-produced composite membranes display significant light-to-heat conversion and excellent performance for solar-driven water vapor generation. This facile synthetic strategy breaks new ground for developing composite porous membranes as high-performance solar steam generators for clean water production.
  •  
5.
  • Lu, Yahua, et al. (författare)
  • Heterostructure membranes of high permeability and stability assembled from MXene and modified layered double hydroxide nanosheets
  • 2023
  • Ingår i: Journal of Membrane Science. - 0376-7388 .- 1873-3123. ; 688
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) MXene-based lamellar membranes play transformative roles in membrane filtration technology. Their practical use in water treatment is however hindered by several hurdles, e.g., unfavorable swelling due to weak interactions between adjacent MXene nanosheets, tortuous diffusion pathways of layered stacking, and the intrinsic aquatic oxidation-prone nature of MXene. Herein, nanoporous 2D/2D heterostructure membranes are elaborately constructed via solution-phase assembly of oppositely charged MXene and modified layered double hydroxide (MLDH) nanosheets. As a multifunctional component, positively charged holey MLDH nanosheets were first tailor-made to serve simultaneously as a binder, spacer and surface-modifier; next they were intercalated into negatively charged MXene lamella to enhance structural stability and mass transfer of membranes. As a result, the as-prepared MLDH@MXene heterostructure membranes successfully break the persistent trade-off between high permeability and selectivity while mitigating the common drawbacks in 2D MXene-based lamellar membranes, e.g., swelling issues, restacking problems, and vulnerable chemical stability. Noticeably, at an operating pressure of 4 bar and a feed solution of 100 ppm of Congo red, the heterostructure membranes enable a threefold jump in permeability (332.7 +/- 20 L m(-2) h(-1 )bar(-1)) when compared to the pristine MXene membrane (119.3 +/- 18 L m(-2 )h(-1) bar(-1)), and better operational stability without compromising the rejection.
  •  
6.
  • Chang, Jian, 1990- (författare)
  • Processing 2D nanomaterials into inorganic-polymer composite films and fibers with well-defined properties
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • 2D materials such as graphene, graphene oxide (GO), reduced graphene oxide (rGO) and MXene, possess unique properties, e.g., high carrier mobilities, mechanical flexibility, good thermal conductivity, and high optical and UV adsorption. They are potentially applicable in the fields of electronics, optoelectronics, catalysts, energy storage facilities, sensors, solar cells, lithium batteries, and so on. Normally, weak interactions and irregular packing or stacking of 2D layers may adversely offset or weaken to some extent their 2D effects such as mechanical and electrical properties at a macroscale. In this regard, it is required to spatially organize 2D materials into macroscopic forms of a well-defined shape (e.g. fibers, films, or 3D structures) in a way that can simultaneously preserve favorable 2D properties and functions shown at the nanoscale, and facilitate their compatibility with the state-of-the-art industrial processes. In my thesis, different types of 2D materials, here GO, rGO and MXene together with polymers were rationally assembled into functional composite materials. The synergistic molecular crosslinking strategy was utilized and controlled in such composite materials for the sake of better performance. My thesis mainly involves four parts: (1) Tough and strong GO composite films via a polycationitrile approach. The interface between GO nanosheets was reinforced via an intermolecular covalent crosslinking approach called “polycationitrile chemistry”. As a result, the mechanical performance of the as-prepared GO-based composite films was enhanced and maintained even at an extremely high relative humidity of 98%.(2) rGO-poly(ionic liquid) (PIL) composite films with high mechanical performance. The rGO/PIL composite films were designed and fabricated, where the synergistic supramolecular interactions between PIL and rGO layer enable high electrical conductivity and favorable mechanical properties.(3) Regenerated cellulose (RC)/MXene composite nanofibers for personal heating management. I harnessed a biodegradable RC-based fibrous matrix to bond with inorganic MXene nanoflakes via electrospinning method. Via hybridization, the as-formed RC/MXene nanofibers present a promotion of mechanical performance and photothermal conversion capability. As a personal heating cloth, it realizes energy-saving outdoor thermoregulatory.(4) RC/MXene solar absorber for solar-driven interfacial water evaporation. The RC/MXene composite nanofibers integrate considerable merits of excellent mechanical performance, wettability, and fast steam generation rate. The RC/MXene solar absorber offers significant values for the practical application of solar-driven steam generation.
  •  
7.
  • Héraly, Frédéric, 1995-, et al. (författare)
  • Capacitive CO2 sensor made of aminated cellulose nanofibrils : development and optimization
  • 2024
  • Ingår i: New Journal of Chemistry. - 1144-0546 .- 1369-9261. ; 48:14, s. 6064-6070
  • Tidskriftsartikel (refereegranskat)abstract
    • CO2 sensors are very important; however, their performance is limited by stability and selectivity. This study unveils a capacitive CO2 sensor with a dielectric layer comprised of amine-functionalized cellulose nanofibril (CNF) foam, significantly enhanced by the addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The core innovation of this research lies in the strategic use of CNF-based foam, which leads to a substantial increase in sensor capacitance, setting a new standard in CO2 monitoring technologies. The sensor showcases exceptional performance under ambient conditions, with marked improvements in sensitivity towards CO2. The advancements are attributed to the chemisorption properties of the aminated CNFs combined with the DBU enhancement, facilitating more effective CO2 capture. By integrating these materials, we present a sensor that opens new avenues for environmental monitoring, healthcare diagnostics, and industrial safety, establishing a new benchmark for capacitive CO2 sensors in efficiency and environmental sustainability.
  •  
8.
  • Khorsand Kheirabad, Atefeh, 1991-, et al. (författare)
  • MXene/poly(ionic liquid) porous composite membranes for systematized solar-driven interfacial steam generation
  • 2023
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we established a synthetic route towards MXene/poly(ionic liquid) (PIL) composite porous membranes as a new platform of solar-thermal conversion materials. These membranes were made by a base-triggered ionic crosslinking process between a cationic PIL and a weak polyacid in solution in the presence of dispersed MXene nanosheets. A three-dimensionally interconnected porous architecture was formed with MXene nanosheets uniformly distributed within it. The unique characteristics of the as-produced composite membranes displays significant light-to-heat conversion and excellent performance for solar-driven water vapor generation. This facile synthetic strategy opens a new avenue for developing composite porous membranes as solar absorbers for the solar-driven water production from natural resources.
  •  
9.
  • Rush, Jeffrey S., et al. (författare)
  • PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
  •  
10.
  • Rush, Jeffrey S., et al. (författare)
  • PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy