SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chapman Oplopoiou B.) "

Sökning: WFRF:(Chapman Oplopoiou B.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Horvath, L., et al. (författare)
  • Pedestal particle balance studies in JET-ILW H-mode plasmas
  • 2023
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 65:4, s. 044003-
  • Tidskriftsartikel (refereegranskat)abstract
    • JET-ILW type I ELMy H-modes at 2.5 MA/2.8 T with constant NBI heating (23 MW) and gas fuelling rate were performed, utilising edge localised mode (ELM) pacing by vertical kicks and plasma shaping (triangularity, delta) as tools to disentangle the effects of ELMs, inter-ELM transport and edge stability on the pedestal particle balance. In agreement with previous studies, the pedestal confinement improves with increasing delta, mostly due to a significant increase in pedestal density while the ELM frequency (fELM) is decreased. Improved pedestal confinement with increasing delta was observed even when the pedestal MHD stability was degraded artificially by vertical kicks, implying that increased triangularity may favourably affect the inter-ELM pedestal recovery. The workflow developed to quantify the pedestal particle balance uses high time-resolution profile reflectometry to characterise the inter-ELM evolution of the plasma particle content (dN/dt), the NEO drift-kinetic solver to evaluate the neoclassical fluxes and interpretative EDGE2D-EIRENE simulations to estimate the edge particle source. The edge particle source is then constrained by deuterium Balmer-alpha line intensity measurements in the main chamber, which are, however, strongly affected by reflections from the metal walls. The reflections are accounted for by the CHERAB code taking the divertor emission (the brightest light source in the torus) distribution from imaging spectroscopy measurements as input. Our analysis shows that in the second half of the ELM cycle, the volume-integrated particle source is larger than dN/dt, indicating that transport plays a key role in the inter-ELM pedestal recovery.
  •  
2.
  • Chapman-Oplopoiou, B., et al. (författare)
  • The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors.
  •  
3.
  • Field, A. R., et al. (författare)
  • Comparing pedestal structure in JET-ILW H-mode plasmas with a model for stiff ETG turbulent heat transport
  • 2023
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 381:2242
  • Tidskriftsartikel (refereegranskat)abstract
    • A predictive model for the electron temperature profile of the H-mode pedestal is described, and its results are compared with the pedestal structure of JET-ILW plasmas. The model is based on a scaling for the gyro-Bohm normalized, turbulent electron heat flux qe/qe,gB resulting from electron temperature gradient (ETG) turbulence, derived from results of nonlinear gyrokinetic (GK) calculations for the steep gradient region. By using the local temperature gradient scale length L-Te in the normalization, the dependence of q(e)/q(e,g)B on the normalized gradients R/L-Te and R/(Lne) can be represented by a unified scaling with the parameter eta(e) = L-ne/L-Te, to which the linear stability of ETG turbulence is sensitive when the density gradient is sufficiently steep. For a prescribed density profile, the value of R/L-Te determined from this scaling, required to maintain a constant electron heat flux qe across the pedestal, is used to calculate the temperature profile. Reasonable agreement with measurements is found for different cases, the model providing an explanation of the relative widths and shifts of the T-e and n(e) profiles, as well as highlighting the importance of the separatrix boundary conditions. Other cases showing disagreement indicate conditions where other branches of turbulence might dominate.This article is part of a discussion meeting issue "H-mode transition and pedestal studies in fusion plasmas'.
  •  
4.
  • Predebon, I., et al. (författare)
  • Isotope mass dependence of pedestal transport in JET H-mode plasmas
  • 2023
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 63:3, s. 036010-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comparative transport analysis of the isotope mass dependence in the pedestal of two pairs of deuterium/hydrogen type I ELMy H-mode discharges in JET with ITER-like wall, one characterized by the same input power, the other one by the same stored energy. The investigation, carried out using the gyrokinetic code GENE, focuses on the steep profile region of the pedestal. While large wavenumber modes mainly contribute to the electron heat flux and are scarcely influenced by the main gas isotope, an effect of the ion mass in agreement with the experimental (so called anti-gyro-Bohm) scaling is revealed in the low wavenumber range. In this context, the major role played by the E x B shear in regulating the ion-temperature-gradient turbulence is analyzed in some detail. The competing level of turbulent and neoclassical transport is quantified to shed light on the experimental features of the pedestal profiles at different ion mass, with the particle transport found to be consistent with a higher pedestal top density for increasing isotope masses, and the heat transport shown to match the roughly unaltered observed temperature profiles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy