SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Guanyi) "

Sökning: WFRF:(Chen Guanyi)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qi, Tian, et al. (författare)
  • Biomass steam gasification in bubbling fluidized bed for higher-H 2 syngas : CFD simulation with coarse grain model
  • 2019
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 44:13, s. 6448-6460
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive coarse grain model (CGM) is applied to simulation of biomass steam gasification in bubbling fluidized bed reactor. The CGM was evaluated by comparing the hydrodynamic behavior and heat transfer prediction with the results predicted using the discrete element method (DEM) and experimental data in a lab-scale fluidized bed furnace. CGM shows good performance and the computational time is significantly shorter than the DEM approach. The CGM is used to study the effects of different operating temperature and steam/biomass (S/B) ratio on the gasification process and product gas composition. The results show that higher temperature enhances the production of CO, and higher S/B ratio improves the production of H 2 , while it suppresses the production of CO. For the main product H 2 , the minimum relative error of CGM in comparison with experiment is 1%, the maximum relative error is less than 4%. For the total gas yield and H 2 gas yield, the maximum relative errors are less than 7%. The predicted concentration of different product gases is in good agreement with experimental data. CGM is shown to provide reliable prediction of the gasification process in fluidized bed furnace with considerably reduced computational time.
  •  
2.
  • Zhou, Shengquan, et al. (författare)
  • MILD combustion of low calorific value gases
  • 2024
  • Ingår i: Progress in Energy and Combustion Science. - 0360-1285. ; 104
  • Forskningsöversikt (refereegranskat)abstract
    • The utilization of low calorific value gases (LCVG) in combustion devices presents particular challenges in terms of ignition and sustained combustion stability due to the presence of non-combustible components. Moderate or intense low-oxygen dilution (MILD) combustion has emerged as a promising technology for LCVG combustion, offering numerous advantages such as high combustion efficiency, reduced pollutant emissions, and increased fuel flexibility. However, the current body of research in this area is fragmented, making it challenging to draw meaningful comparisons between studies and hindering its practical application. This paper provides a comprehensive review of conventional and MILD combustion of LCVG. To understand the impact of composition on combustion, the fuels are classified based on their composition of hydrogen, carbon monoxide, methane, carbon dioxide, nitrogen, and water. We also delve into the chemical and physical effects of composition, including reaction kinetics and turbulence mixing, and provide an overview of the burners and methods used in establishing MILD combustion. Furthermore, computational fluid dynamics (CFD) models and chemical kinetics in MILD combustion are also thoroughly discussed. The presence of a large amount of dilution gas in LCVG increases the self-ignition temperature and ignition delay time of the mixture, making preheating the reactants a critical consideration. In MILD combustion, it is crucial to have an inlet reactant temperature higher than the self-ignition temperature (Tin>Tsi) to mitigate the difficulties associated with ignition and unstable combustion. The heat release in MILD combustion should be moderate to ensure that the combustion temperature does not become too high. The non-combustible components of LCVG are beneficial in this regard, as they allow for a temperature increase of less than the self-ignition temperature (ΔT
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy