SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Jieneng) "

Search: WFRF:(Chen Jieneng)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Guang, et al. (author)
  • Neuromorphic Vision Based Multivehicle Detection and Tracking for Intelligent Transportation System
  • 2018
  • In: Journal of Advanced Transportation. - : Hindawi Limited. - 0197-6729 .- 2042-3195.
  • Journal article (peer-reviewed)abstract
    • Neuromorphic vision sensor is a new passive sensing modality and a frameless sensor with a number of advantages over traditional cameras. Instead of wastefully sending entire images at fixed frame rate, neuromorphic vision sensor only transmits the local pixel-level changes caused by the movement in a scene at the time they occur. This results in advantageous characteristics, in terms of low energy consumption, high dynamic range, sparse event stream, and low response latency, which can be very useful in intelligent perception systems for modern intelligent transportation system (ITS) that requires efficient wireless data communication and low power embedded computing resources. In this paper, we propose the first neuromorphic vision based multivehicle detection and tracking system in ITS. The performance of the system is evaluated with a dataset recorded by a neuromorphic vision sensor mounted on a highway bridge. We performed a preliminary multivehicle tracking-by-clustering study using three classical clustering approaches and four tracking approaches. Our experiment results indicate that, by making full use of the low latency and sparse event stream, we could easily integrate an online tracking-by-clustering system running at a high frame rate, which far exceeds the real-time capabilities of traditional frame-based cameras. If the accuracy is prioritized, the tracking task can also be performed robustly at a relatively high rate with different combinations of algorithms. We also provide our dataset and evaluation approaches serving as the first neuromorphic benchmark in ITS and hopefully can motivate further research on neuromorphic vision sensors for ITS solutions.
  •  
2.
  • Chen, Guang, et al. (author)
  • FLGR : Fixed Length Gists Representation Learning for RNN-HMM Hybrid-Based Neuromorphic Continuous Gesture Recognition
  • 2019
  • In: Frontiers in Neuroscience. - : FRONTIERS MEDIA SA. - 1662-4548 .- 1662-453X. ; 13
  • Journal article (peer-reviewed)abstract
    • A neuromorphic vision sensors is a novel passive sensing modality and frameless sensors with several advantages over conventional cameras. Frame-based cameras have an average frame-rate of 30 fps, causing motion blur when capturing fast motion, e.g., hand gesture. Rather than wastefully sending entire images at a fixed frame rate, neuromorphic vision sensors only transmit the local pixel-level changes induced by the movement in a scene when they occur. This leads to advantageous characteristics, including low energy consumption, high dynamic range, a sparse event stream and low response latency. In this study, a novel representation learning method was proposed: Fixed Length Gists Representation (FLGR) learning for event-based gesture recognition. Previous methods accumulate events into video frames in a time duration (e.g., 30 ms) to make the accumulated image-level representation. However, the accumulated-frame-based representation waives the friendly event-driven paradigm of neuromorphic vision sensor. New representation are urgently needed to fill the gap in non-accumulated-frame-based representation and exploit the further capabilities of neuromorphic vision. The proposed FLGR is a sequence learned from mixture density autoencoder and preserves the nature of event-based data better. FLGR has a data format of fixed length, and it is easy to feed to sequence classifier. Moreover, an RNN-HMM hybrid was proposed to address the continuous gesture recognition problem. Recurrent neural network (RNN) was applied for FLGR sequence classification while hidden Markov model (HMM) is employed for localizing the candidate gesture and improving the result in a continuous sequence. A neuromorphic continuous hand gestures dataset (Neuro ConGD Dataset) was developed with 17 hand gestures classes for the community of the neuromorphic research. Hopefully, FLGR can inspire the study on the event-based highly efficient, high-speed, and high-dynamic-range sequence classification tasks.
  •  
3.
  • Chen, Guang, et al. (author)
  • NeuroIV : Neuromorphic Vision Meets Intelligent Vehicle Towards Safe Driving With a New Database and Baseline Evaluations
  • 2022
  • In: IEEE transactions on intelligent transportation systems (Print). - : Institute of Electrical and Electronics Engineers (IEEE). - 1524-9050 .- 1558-0016. ; 23:2, s. 1171-1183
  • Journal article (peer-reviewed)abstract
    • Neuromorphic vision sensors such as the Dynamic and Active-pixel Vision Sensor (DAVIS) using silicon retina are inspired by biological vision, they generate streams of asynchronous events to indicate local log-intensity brightness changes. Their properties of high temporal resolution, low-bandwidth, lightweight computation, and low-latency make them a good fit for many applications of motion perception in the intelligent vehicle. However, as a younger and smaller research field compared to classical computer vision, neuromorphic vision is rarely connected with the intelligent vehicle. For this purpose, we present three novel datasets recorded with DAVIS sensors and depth sensor for the distracted driving research and focus on driver drowsiness detection, driver gaze-zone recognition, and driver hand-gesture recognition. To facilitate the comparison with classical computer vision, we record the RGB, depth and infrared data with a depth sensor simultaneously. The total volume of this dataset has 27360 samples. To unlock the potential of neuromorphic vision on the intelligent vehicle, we utilize three popular event-encoding methods to convert asynchronous event slices to event-frames and adapt state-of-the-art convolutional architectures to extensively evaluate their performances on this dataset. Together with qualitative and quantitative results, this work provides a new database and baseline evaluations named NeuroIV in cross-cutting areas of neuromorphic vision and intelligent vehicle.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view