SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Shangshang) "

Sökning: WFRF:(Chen Shangshang)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qian, Deping, et al. (författare)
  • Design rules for minimizing voltage losses in high-efficiency organic solar cells
  • 2018
  • Ingår i: Nature Materials. - : NATURE PUBLISHING GROUP. - 1476-1122 .- 1476-4660. ; 17:8, s. 703-
  • Tidskriftsartikel (refereegranskat)abstract
    • The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.
  •  
2.
  • Chen, Shangshang, et al. (författare)
  • Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer
  • 2018
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 30:45
  • Tidskriftsartikel (refereegranskat)abstract
    • State-of-the-art organic solar cells (OSCs) typically suffer from large voltage loss (V-loss) compared to their inorganic and perovskite counterparts. There are some successful attempts to reduce the V-loss by decreasing the energy offsets between the donor and acceptor materials, and the OSC community has demonstrated efficient systems with either small highest occupied molecular orbital (HOMO) offset or negligible lowest unoccupied molecular orbital (LUMO) offset between donors and acceptors. However, efficient OSCs based on a donor/acceptor system with both small HOMO and LUMO offsets have not been demonstrated simultaneously. In this work, an efficient nonfullerene OSC is reported based on a donor polymer named PffBT2T-TT and a small-molecular acceptor (O-IDTBR), which have identical bandgaps and close energy levels. The Fourier-transform photocurrent spectroscopy external quantum efficiency (FTPS-EQE) spectrum of the blend overlaps with those of neat PffBT2T-TT and O-IDTBR, indicating the small driving forces for both hole and electron transfer. Meanwhile, the OSCs exhibit a high electroluminescence quantum efficiency (EQE(EL)) of approximate to 1 x 10(-4), which leads to a significantly minimized nonradiative V-loss of 0.24 V. Despite the small driving forces and a low V-loss, a maximum EQE of 67% and a high power conversion efficiency of 10.4% can still be achieved.
  •  
3.
  • Wang, Shangshang, et al. (författare)
  • Cu2+-Selectivity gated photochromism in Schiff-modified diarylethenes with a star-shaped structure
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 5:2, s. 282-289
  • Tidskriftsartikel (refereegranskat)abstract
    • A great deal of effort has been devoted to developing gated photochromic systems due to their advantages in the smart materials and opto-electronic fields, whereas the gating function through certain ions has rarely been addressed. Since the photochromic materials gated by ions can be readily further processed into a multi-functional molecular switch and probe, we herein designed and conveniently synthesized a star-shaped Schiff-based diarylethene derivative showing typical photochromic properties in solution. This compound possesses two response channels (colorimetric and fluorogenic) to Cu2+ ions with photoswitching characteristics, making it a viable photochromic probe. It is noteworthy that its photochromic reactivity can be locked when Cu2+ ions are introduced into the solution. Moreover, the photoinactive and photoactive states can be interchanged reversibly by binding Cu2+ ions and unbinding Cu2+ ions using EDTA, which shows promise for application in multi-controlled molecular switches and smart materials. The mechanism of the photochromic properties locked by Cu2+ ions is reasonably proposed by theoretical simulations. These results could be valuable for the further development of molecular switching systems with multiple stimuli responses.
  •  
4.
  • Liu, Jing, et al. (författare)
  • Fast charge separation in a non-fullerene organic solar cell with a small driving force
  • 2016
  • Ingår i: NATURE ENERGY. - : NATURE PUBLISHING GROUP. - 2058-7546. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (E-gap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (E-CT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as E-CT is nearly identical to E-gap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61V. This creates a path towards highly efficient OSCs with a low voltage loss.
  •  
5.
  • Yu, Han, et al. (författare)
  • Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%
  • 2021
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorination of end groups has been a great success in developing efficient small molecule acceptors. However, this strategy has not been applied to the development of polymer acceptors. Here, a dihalogenated end group modified by fluorine and bromine atoms simultaneously, namely IC-FBr, is first developed, then employed to construct a new polymer acceptor (named PYF-T) for all-polymer solar cells (all-PSCs). In comparison with its non-fluorinated counterpart (PY-T), PYF-T exhibits stronger and red-shifted absorption spectra, stronger molecular packing and higher electron mobility. Meanwhile, the fluorination on the end groups down-shifts the energy levels of PYF-T, which matches better with the donor polymer PM6, leading to efficient charge transfer and small voltage loss. As a result, an all-PSC based on PM6:PYF-T yields a higher power conversion efficiency (PCE) of 14.1% than that of PM6:PY-T (11.1%), which is among the highest values for all-PSCs reported to date. This work demonstrates the effectiveness of fluorination of end-groups in designing high-performance polymer acceptors, which paves the way toward developing more efficient and stable all-PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy