SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Yawen) "

Sökning: WFRF:(Chen Yawen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arghavani, Abbas, et al. (författare)
  • Power-Adaptive Communication With Channel-Aware Transmission Scheduling in WBANs
  • 2024
  • Ingår i: IEEE Internet of Things Journal. - : Institute of Electrical and Electronics Engineers (IEEE). - 2327-4662. ; 11:9, s. 16087-16102
  • Tidskriftsartikel (refereegranskat)abstract
    • Radio links in wireless body area networks (WBANs) are highly subject to short and long-term attenuation due to the unstable network topology and frequent body blockage. This instability makes it challenging to achieve reliable and energy-efficient communication, but on the other hand, provides a great potential for the sending nodes to dynamically schedule the transmissions at the time with the best expected channel quality. Motivated by this, we propose improved Gilbert-Elliott Markov chain model (IGE), a memory-efficient Markov chain model to monitor channel fluctuations and provide a long-term channel prediction. We then design adaptive transmission power selection (ATPS), a deadline-constrained channel scheduling scheme that enables a sending node to buffer the packets when the channel is bad and schedule them to be transmitted when the channel is expected to be good within a deadline. ATPS can self-learn the pattern of channel changes without imposing a significant computation or memory overhead on the sending node. We evaluate the performance of ATPS through experiments using TelosB motes under different scenarios with different body postures and packet rates. We further compare ATPS with several state-of-the-art schemes, including the optimal scheduling policy, in which the optimal transmission time for each packet is calculated based on the collected received signal strength indicator (RSSI) samples in an off-line manner. The experimental results reveal that ATPS performs almost as efficiently as the optimal scheme in high-date-rate scenarios and has a similar trend on power level usage.
  •  
2.
  • Chen, Yawen, et al. (författare)
  • A Novel P-shape Tessellation Approach on Double-Loop Networks
  • 2009
  • Ingår i: 2009 IEEE INTERNATIONAL SYMPOSIUM ON IT IN MEDICINE & EDUCATION, VOLS 1 AND 2, PROCEEDINGS. - NEW YORK : IEEE. - 9781424439294 ; , s. 507-511
  • Konferensbidrag (refereegranskat)abstract
    • Double loop computer networks are widely used in the design and implementation of local area networks and parallel processing architectures. However the embedding problems on double-loop networks have not been well studied due to the complexity of double-loop networks. Since the traditional L-shape, designed to compute the diameter of double-loop networks, is not efficient to solve embedding problems, we propose a novel tessellation approach to partition the geometric plane of double-loop networks into a set of parallelogram shaped tiles, called P-shape. Our proposed tessellation technique, P-shape, is a useful theoretical tool for embedding meshes on double-loop networks, and can be extended to analyze other problems as a bridge between regular graphs and double-loop networks.
  •  
3.
  • Guan, Tianfu, et al. (författare)
  • Decoding the Self-Assembly Plasmonic Interface Structure in a PbS Colloidal Quantum Dot Solid for a Photodetector
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 17:22, s. 23010-23019
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid plasmonic nanostructures have gained enormous attention in a variety of optoelectronic devices due to their surface plasmon resonance properties. Self-assembled hybrid metal/quantum dot (QD) architectures offer a means of coupling the properties of plasmonics and QDs to photodetectors, thereby modifying their functionality. The arrangement and localization of hybrid nanostructures have an impact on exciton trapping and light harvesting. Here, we present a hybrid structure consisting of self-assembled gold nanospheres (Au NSs) embedded in a solid matrix of PbS QDs for mapping the interface structures and the motion of charge carriers. Grazing-incidence small-angle X-ray scattering is utilized to analyze the localization and spacing of the Au NSs within the hybrid structure. Furthermore, by correlating the morphology of the Au NSs in the hybrid structure with the corresponding differences observed in the performance of photodetectors, we are able to determine the impact of interface charge carrier dynamics in the coupling structure. From the perspective of architecture, our study provides insights into the performance improvement of optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy