SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chi Jinshu) "

Sökning: WFRF:(Chi Jinshu)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
3.
  • Chi, Jinshu (författare)
  • Adjustment of CO2 flux measurements due to the bias in the EC150 infrared gas analyzer
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 276
  • Tidskriftsartikel (refereegranskat)abstract
    • During the Regional Approaches to Climate Change (REACCH) program, eddy covariance monitoring over agricultural fields were used to estimate annual carbon and water budgets in the inland Pacific Northwest. Here, we assess the effect of a bias in the high-frequency CO2 concentration measurements using the Campbell Scientific EC150 infra-red gas analyzer on the CO2 fluxes and field-scale carbon balances. The bias stems from using a lower frequency temperature measurement to calculate the CO2 density, which misses higher frequency temperature fluctuations. To generate the bias adjustment, data were collected over four similar agricultural sites as part of the Long-Term Agroecosystem Research network for multiple months using the same four instrument sets used in the REACCH project. The difference between the high-frequency and low-frequency CO2 fluxes were regressed against the kinematic heat fluxes to generate a correction equation for each instrument set, which were applied to the historical REACCH data to determine the effect of the bias on the measured and gap-filled flux values. The re-calculated positive biases in the measured fluxes were 40 gC-CO(2)m(-2) yr(-1) to 126 gC-CO(2)m(-2) yr-1, indicating greater losses to the atmosphere than initially estimated. Once gap-filled, three out of fourteen site-years switched from weak carbon sinks to weak carbon sources. When the carbon exported via harvest was included in the budget calculation the bias correction still impacted the source/sink strength but did not change the sign of the carbon balance. Overall, the total net ecosystem exchange decreased between 300-470 gC-CO(2)m(-2) per site (29-46%) over the 4 crop-years from the bias adjustment process.
  •  
4.
  • Chi, Jinshu (författare)
  • Carbon and Water Budgets in Multiple Wheat-Based Cropping Systems in the Inland Pacific Northwest US: Comparison of CropSyst Simulations with Eddy Covariance Measurements
  • 2017
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate carbon and water flux simulations for croplands are greatly dependent on high quality representation of management practices and meteorological conditions, which are key drivers of the surface-atmosphere exchange processes. Fourteen site-years of carbon and water fluxes were simulated using the CropSyst model over four agricultural sites in the inland Pacific Northwest (iPNW) US from October 1, 2011 to September 30, 2015. Model performance for field-scale net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) was evaluated by comparing simulations with long-term eddy covariance measurements. The model captured the temporal variations of NEE and ET reasonably well with an overall r of 0.78 and 0.80, and a low RMSE of 1.82 g C m(-2) d(-1) and 0.84 mm d(-1) for NEE and ET, respectively. The model slightly underestimated NEE and ET by 0.51 g C m(-2) d(-1) and 0.09 mm d(-1), respectively. ET simulations showed better agreement with eddy covariance measurements than NEE. The model performed much better for the sites with detailed initial conditions (e.g., SOC content) and management practice information (e.g., tillage type). The CropSyst results showed that the winter wheat fields could be annual net carbon sinks or close to neutral with the net ecosystem carbon balance (NECB) ranging from 92 to -17 g C m(-2), while the spring crop fields were net carbon sources or neutral with an annual NECB of -327 to -3 g C m(-2). Simulations for the paired tillage sites showed that the no-till site resulted in lower CO2 emissions for the crop rotations of winter wheat-spring garbanzo, but had higher carbon loss into the atmosphere for spring canola compared to the conventional tillage site. Water budgets did not differ significantly between the two tillage systems. Winter wheat in the high-rainfall area had higher crop yields and water use efficiency but emitted larger amounts of CO2 into the atmosphere than in the low-rainfall area. Based on model evaluations in this study, CropSyst appears promising as a tool to simulate field-scale carbon and water budgets and assess the effects of different management practices and local meteorological conditions for the wheat-based cropping systems in this region.
  •  
5.
  • Chi, Jinshu (författare)
  • Effects of Climatic Conditions and Management Practices on Agricultural Carbon and Water Budgets in the Inland Pacific Northwest USA
  • 2017
  • Ingår i: Journal of Geophysical Research: Biogeosciences. - 2169-8953 .- 2169-8961. ; 122, s. 3142-3160
  • Tidskriftsartikel (refereegranskat)abstract
    • Cropland is an important land cover influencing global carbon and water cycles. Variability of agricultural carbon and water fluxes depends on crop species, management practices, soil characteristics, and climatic conditions. In the context of climate change, it is critical to quantify the long-term effects of these environmental drivers and farming activities on carbon and water dynamics. Twenty site-years of carbon and water fluxes covering a large precipitation gradient and a variety of crop species and management practices were measured in the inland Pacific Northwest using the eddy covariance method. The rain-fed fields were net carbon sinks, while the irrigated site was close to carbon neutral during the winter wheat crop years. Sites growing spring crops were either carbon sinks, sources, or neutral, varying with crops, rainfall zones, and tillage practices. Fluxes were more sensitive to variability in precipitation than temperature: annual carbon and water fluxes increased with the increasing precipitation while only respiration increased with temperature in the high-rainfall area. Compared to a nearby rain-fed site, irrigation improved winter wheat production but resulted in large losses of carbon and water to the atmosphere. Compared to conventional tillage, no-till had significantly lower respiration but resulted in slightly lower yields and water use efficiency over 4 years. Under future climate change, it is expected that more carbon fixation by crops and evapotranspiration would occur in a warmer and wetter environment.
  •  
6.
  • Chi, Jinshu (författare)
  • Estimating Biomass and Yield Using METRIC Evapotranspiration and Simple Growth Algorithms
  • 2019
  • Ingår i: Agronomy Journal. - : Wiley. - 0002-1962 .- 1435-0645. ; 111, s. 536-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Crop models are used to assess crop yield under prescribed scenarios and at scales varying from point to field to region and beyond. The use of models to evaluate the performance of agricultural systems, as they exist in the real world, can be challenging and plagued with constraints. This is due to the difficulty in characterizing the spatial variability across the landscape of crops, soils, weather, management, miscellaneous stress factors, and the initial state of the system. We propose the use of actual evapotranspiration (ETa) estimated from remote sensing images and simple crop growth-transpiration algorithms as an alternative to the use of standalone crop models for real-world yield assessment. In this study, we combined ETa estimates from METRIC (Mapping Evapotranspiration at High Resolution with Internalized Calibration) with simple crop growth algorithms extracted from the CropSyst model to estimate biomass production and yield at high resolution (30 by 30 m). We tested this approach in four dryland agriculture sites in eastern Washington State with contrasting annual precipitation. All sites were equipped with an eddy covariance flux tower for ground ETa estimation. The proposed approach was able to provide good estimates of ETa, seasonal change of aboveground biomass and yields at all sites when compared with observations for a 3-year period, collectively including five different annual crops. Because estimations are made at high resolution, they can be scaled up to field or regional scales. Advantages and limitations of the proposed approach are discussed.
  •  
7.
  • Chi, Jinshu, et al. (författare)
  • Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • The forest floor provides an important interface of soil-atmosphere CO2 exchanges but their controls and contributions to the ecosystem-scale carbon budget are uncertain due to measurement limitations. In this study, we deployed eddy covariance systems below- and above-canopy to measure the spatially integrated net forest floor CO2 exchange (NFFE) and the entire net ecosystem CO2 exchange (NEE) at two mature contrasting stands located in close vicinity in boreal Sweden. We first developed an improved cospectra model to correct below-canopy flux data. Our empirical below-canopy cospectra models revealed a greater contribution of large- and small-scale eddies in the trunk space compared to their distribution in the above-canopy turbulence cospectra. We found that applying the above-canopy cospectra model did not affect the below-canopy annual CO2 fluxes at the sparse pine forest but significantly underestimated fluxes at the dense mixed spruce-pine stand. At the mixed spruce-pine stand, forest floor respiration (Rff) was higher and photosynthesis (GPPff) was lower, leading to a 1.4 times stronger net CO2 source compared to the pine stand. We further found that drought enhanced Rff more than GPPff, leading to increased NFFE. Averaged across the six site-years, forest floor fluxes contributed 82% to ecosystem-scale respiration (Reco) and 12% to gross primary production (GPP). Since the annual GPP was similar between both stands, the considerable difference in their annual NEE was due to contrasting Reco, the latter being primarily driven by the variations in NFFE. This implies that NFFE acted as the driver for the differences in NEE between these two contrasting stands. This study therefore highlights the important role of forest floor CO2 fluxes in regulating the boreal forest carbon balance. It further calls for extended efforts in acquiring high spatiotemporal resolution data of forest floor fluxes to improve predictions of global change impacts on the forest carbon cycle.
  •  
8.
  • Chi, Jinshu, et al. (författare)
  • Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
  • 2020
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10, s. 555-560
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming increases evapotranspiration (ET) more in boreal peatlands than in forests. Observations show that peatland ET can exceed forest ET by up to 30%, indicating a stronger warming response in peatlands. Earth system models do not fully account for peatlands and hence may underestimate future boreal ET.The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091-2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.
  •  
9.
  • Chi, Jinshu, et al. (författare)
  • The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 274, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal forests exchange large amounts of carbon dioxide (CO2) with the atmosphere. A managed boreal landscape usually comprises various potential CO2 sinks and sources across forest stands of varying age classes, clear-cut areas, mires, and lakes. Due to this heterogeneity and complexity, large uncertainties exist regarding the net CO2 balance at the landscape scale. In this study, we present the first estimate of the net CO2 exchange over a managed boreal landscape (∼68 km2) in northern Sweden, based on tall tower eddy covariance measurements. Our results suggest that from March 1, 2016 to February 28, 2018, the heterogeneous landscape was a net CO2 sink with a 2-year mean uptake of −87 ± 6 g C m−2 yr−1. Due to an earlier and warmer spring and sunnier autumn, the landscape was a stronger CO2 sink during the first year (−122 ± 8 g C m−2) compared to the second year (−52 ± 9 g C m−2). Footprint analysis shows that 87% of the CO2 flux measurements originated from forests, whereas mires, clear-cuts, lakes, and grassland contributed 11%, 1%, 0.7%, and 0.2%, respectively. Altogether, the CO2 sink strength of the heterogeneous landscape was up to 38% lower compared to the sink strength of a mature stand surrounding the tower. Overall, this study suggests that the managed boreal landscape acted as a CO2 sink and advocates tall tower eddy covariance measurements to improve regional carbon budget estimates.
  •  
10.
  • Chi, Jinshu, et al. (författare)
  • The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:4, s. 2353-2367
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall-tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m−2 year−1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2-eq m−2 year−1, thus providing a climate-cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear-cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall-tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.
  •  
11.
  • Graf, Alexander, et al. (författare)
  • Altered energy partitioning across terrestrial ecosystems in the European drought year 2018 : Energy partitioning in the drought 2018
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO 2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO 2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
12.
  • Klosterhalfen, Anne, et al. (författare)
  • Altered energy partitioning across terrestrial ecosystems in the European drought year 2018
  • 2020
  • Ingår i: Philosophical Transactions B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO(2)exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO(2)uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
13.
  • Klosterhalfen, Anne, et al. (författare)
  • Two-level eddy covariance measurements reduce bias in land-atmosphere exchange estimates over a heterogeneous boreal forest landscape
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 339
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimates of land-atmosphere exchanges of carbon, energy, water vapor, and other greenhouse gases based on the eddy covariance (EC) technique rely on the fundamental assumption that the flux footprint area is homogeneous. We investigated the impact of source area heterogeneity on flux estimates in single-level EC measurements over a managed boreal forest landscape. For this purpose, we compared single-level measurements with those from a two-level approach consisting of concurrent EC measurements at 60 and 85 m above the ground. This two-level set-up provided a unique opportunity to obtain nearly congruent diel footprint areas by combining data from the higher and lower levels during day- and nighttime, respectively. We found that the variation in the averaged footprint area between day- and nighttime was reduced by up to 89% in the two-level approach compared to the single-level data at the higher level (85 m). Considering spring, summer, and fall months, the resulting relative potential bias in flux observations due to landscape heterogeneity was highest at short time steps (≤ daily) ranging between 35% and 325% for half-hourly data. During winter months, when stable atmospheric regimes prevailed during day and night, the footprints within the diel course nearly overlapped also at a given single level and hence no improvement of flux estimates was found. The absolute cumulated sums for the study period (excluding winter months) of gross primary production, ecosystem respiration, latent heat, and sensible heat flux were underestimated by about 28%, 52%, 5%, and 3%, respectively, whereas that of net ecosystem CO2 exchange was overestimated by about 109% in the single-level approach. Overall this study suggests that footprint heterogeneity may introduce considerable bias in single-level flux estimates — particularly at short time scales — with large implications for model-data fusion studies, site comparisons, and up- or downscaling of land-atmosphere exchange processes.
  •  
14.
  • Kozii, Nataliia, et al. (författare)
  • Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model
  • 2020
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 24, s. 2999-3014
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is well known that evapotranspiration (ET) represents an important water flux at local to global scales, few studies have quantified the magnitude and relative importance of ET and its individual flux components in high-latitude forests. In this study, we combined empirical sapflux, throughfall, and eddy-covariance measurements with estimates from a process-based model to partition the water balance in a northern boreal forested catchment. This study was conducted within the Krycklan catchment, which has a rich history of hydrological measurements, thereby providing us with the unique opportunity to compare the absolute and relative magnitudes of ET and its flux components to other water balance components. During the growing season, ET represented ca. 85 % of the incoming precipitation. Both empirical results and model estimates suggested that tree transpiration (T) and evaporation of intercepted water from the tree canopy (I-C) represented 43 % and 31 % of ET, respectively, and together were equal to ca. 70 % of incoming precipitation during the growing season. Understory evapotranspiration (ETu) was less important than T and I-C during most of the study period, except for late autumn, when ETu was the largest ET flux component. Overall, our study high-lights the importance of trees in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through these forested landscapes.
  •  
15.
  • Peng, Haijun, et al. (författare)
  • Environmental Controls on Multi-Scale Dynamics of Net Carbon Dioxide Exchange From an Alpine Peatland on the Eastern Qinghai-Tibet Plateau
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are characterized by their large carbon storage capacity and play an essential role in the global carbon cycle. However, the future of the carbon stored in peatland ecosystems under a changing climate remains unclear. In this study, based on the eddy covariance technique, we investigated the net ecosystem CO2 exchange (NEE) and its controlling factors of the Hongyuan peatland, which is a part of the Ruoergai peatland on the eastern Qinghai-Tibet Plateau (QTP). Our results show that the Hongyuan alpine peatland was a CO2 sink with an annual NEE of -226.61 and -185.35 g C m(-2) in 2014 and 2015, respectively. While, the non-growing season NEE was 53.35 and 75.08 g C m(-2) in 2014 and 2015, suggesting that non-growing seasons carbon emissions should not be neglected. Clear diurnal variation in NEE was observed during the observation period, with the maximum CO2 uptake appearing at 12:30 (Beijing time, UTC+8). The Q(10) value of the non-growing season in 2014 and 2015 was significantly higher than that in the growing season, which suggested that the CO2 flux in the non-growing season was more sensitive to warming than that in the growing season. We investigated the multi-scale temporal variations in NEE during the growing season using wavelet analysis. On daily timescales, photosynthetically active radiation was the primary driver of NEE. Seasonal variation in NEE was mainly driven by soil temperature. The amount of precipitation was more responsible for annual variation of NEE. The increasing number of precipitation event was associated with increasing annual carbon uptake. This study highlights the need for continuous eddy covariance measurements and time series analysis approaches to deepen our understanding of the temporal variability in NEE and multi-scale correlation between NEE and environmental factors.
  •  
16.
  • Peng, Haijun, et al. (författare)
  • Methane Emissions Offset Net Carbon Dioxide Uptake From an Alpine Peatland on the Eastern Qinghai-Tibetan Plateau
  • 2021
  • Ingår i: Journal of geophysical research. Atmospheres. - 2169-897X .- 2169-8996. ; 126
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands store large amounts of carbon (C) and actively exchange greenhouse gases (GHGs) with the atmosphere, thus significantly affecting global C cycle and climate. Large uncertainty exists in C and GHG estimates of the alpine peatlands on Qinghai-Tibetan Plateau (QTP), as direct measurements of CO2 and CH4 fluxes are scarce in this region. In this study, we provided 32-month CO2 and CH4 fluxes measured using the eddy covariance (EC) technique in a typical alpine peatland on the eastern QTP to estimate the net C and CO2 equivalent (CO2-eq) fluxes and investigate their environmental controls. Our results showed that the mean annual CO2 and CH4 fluxes were -68 +/- 8 g CO2-C m(-2) yr(-1) and 35 +/- 0.3 g CH4-C m(-2) yr(-1), respectively. While considering the traditional and sustained global warming potentials of CH4 over the 100-year timescale, the peatland acted as a net CO2-eq source (1,059 +/- 30 and 1,853 +/- 31 g CO2-eq m(-2) yr(-1), respectively). The net CO2-eq emissions during the non-growing seasons contributed to over 40% of the annual CO2-eq budgets. We further found that net CO2-eq flux was primarily influenced by global radiation and soil temperature variations. This study was the first assessment to quantify the net CO2-eq flux of the alpine peatland in the QTP region using EC measurements. Our study highlights that CH4 emissions from the alpine peatlands can largely offset the net cooling effect of CO2 uptake and future climate changes such as global warming might further enhance their potential warming effect.
  •  
17.
  • Schiestl-Aalto, Pauliina, et al. (författare)
  • Disaggregating the effects of nitrogen addition on gross primary production in a boreal Scots pine forest
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 301
  • Tidskriftsartikel (refereegranskat)abstract
    • Adding nitrogen to boreal forest ecosystems commonly increases gross primary production (GPP). The effect of nitrogen addition on ecosystem GPP is convoluted due to the impacts of and interactions among leaf scale photosynthetic productivity, canopy structure, site fertility, and environmental constraints. We used a unique controlled nitrogen fertilisation experiment combined with eddy covariance measurements and the calibration of a LUE-based (light use efficiency) photosynthetic production model in order to reveal differences in photosynthetic capacity due to nitrogen addition. A systematically designed soil moisture survey was conducted to characterise the within-site spatial heterogeneity and validate the difference of water stress between fertilised and control sites. The canopy photosynthetic light responses and environmental constraints were evaluated using an inverse modelling approach. We found that nitrogen fertilisation elevated ecosystem GPP by 24% according to model simulations. This was caused by increases in ecosystem light interception (through an increase in leaf area index (LAI)) and LUE by 7% and 17%, respectively. Nitrogen addition increased canopy potential LUE for both low and high photosynthetic photon flux density (PPFD) conditions. The calculations of leaf area and light interception indicated that the understorey vegetation contributed 9% of ecosystem GPP in the fertilised site and 7% in the control site when assuming a same LUE for trees and shrubs. The constraint arising from atmospheric water demand, rather than soil water stress, was the dominating control of the intra- and inter-annual GPP variations. The uncertainty propagated from soil moisture data is negligible for GPP predictions, but influential in the inference on the severity of the drought. This study demonstrates the combination of the controlled field experiment with the inverse modelling approach provides a powerful tool to quantitatively describe and disaggregate N addition effects on forest ecosystem GPP.
  •  
18.
  • Vernay, Antoine, et al. (författare)
  • Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances
  • 2020
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 43, s. 2124-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain, because estimates derived from eddy covariance (EC) rely on semi-empirical modelling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPP(iso/SF), at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPP(iso/SF)estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPP(iso/SF)to the GPP derived from PRELES, a model parameterized with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilized and a reference plot. The resulting annual and daily GPP(iso/SF)estimates agreed well with PRELES, in the fertilized plot and the reference plot. We discuss the GPP(iso/SF)method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.
  •  
19.
  • Vernay, Antoine, et al. (författare)
  • Partitioning gross primary production of a boreal forest among species and strata: A multi-method approach
  • 2024
  • Ingår i: AGRICULTURAL AND FOREST METEOROLOGY. - 0168-1923 .- 1873-2240. ; 345
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared three methods of estimating gross primary production (GPP) of a boreal forest dominated by spruce and pine with the goals of 1) converging on the best estimate and 2) disaggregating the GPP among the two canopy species and the understory stratum. The three methods were: 1) eddy covariance (EC), 2) a soil-vegetation-atmosphere transfer model, APES, driven by meteorological data, and 3) an ecophysiological approach (Iso/SF) based on sap flux and phloem delta C-13, where sap flux is used to estimate stomatal conductance and delta C-13 is used to estimate intrinsic water-use efficiency (WUEi). The EC and APES methods agreed rather well, which was expected because APES was developed to predict eddy covariance data. The Iso/SF method, which is based on independent data, yielded lower estimates. This was partly because it excluded understory vegetation from the GPP estimate. We also found that the measured sap flux/transpiration estimates for spruce in Iso/SF were much lower than those from APES. In contrast, the absolute values for Scots pines were very similar between the two methods, especially in the summer. In both species, the seasonal dynamics match well among all methods. This multi-method approach allowed us to detect possible problems in the spruce sap-flux measurements, but successfully upscaled pine data from ecophysiological traits to stand and ecosystem functioning.
  •  
20.
  • Virkkala, Anna Maria, et al. (författare)
  • Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:17, s. 4040-4059
  • Tidskriftsartikel (refereegranskat)abstract
    • The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
  •  
21.
  • Zhao, Peng, et al. (författare)
  • Long-term nitrogen addition raises the annual carbon sink of a boreal forest to a new steady-state
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 324
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal forest is an important global carbon (C) sink. Since low soil nitrogen (N) availability is commonly a key constraint on forest productivity, the prevalent view is that increased N input enhances its C sink-strength. This understanding however relies primarily on observations of increased aboveground tree biomass and soil C stock following N fertilization, whereas empirical data evaluating the effects on the whole ecosystem-scale C balance are lacking. Here we use a unique long-term experiment consisting of paired forest stands with eddy covariance measurements to explore the effect of ecosystem-scale N fertilization on the C balance of a managed boreal pine forest. We find that the annual C uptake (i.e. net ecosystem production, NEP) at the fertilized stand was 16 +/- 2% greater relative to the control stand by the end of the first decade of N addition. Subsequently, the ratio of NEP between the fertilized and control stand remained at a stable level during the following five years with an average NEP to N response of 7 & PLUSMN; 1 g C per g N. Our study reveals that this non-linear response of NEP to long-term N fertilization was the result of a cross-seasonal feedback between the N-induced increases in both growing-season C uptake and subsequent winter C emission. We further find that one decade of N addition altered the sensitivity of ecosystem C fluxes to key environmental drivers resulting in divergent responses to weather patterns. Thus, our study highlights the need to account for ecosystem-scale responses to perturbations to improve our understanding of nitrogen-carbon-climate feedbacks in boreal forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy