SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chiavassa Andrea) "

Sökning: WFRF:(Chiavassa Andrea)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, Betty, et al. (författare)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
2.
  • Gent, Matthew Raymond, et al. (författare)
  • The SAPP pipeline for the determination of stellar abundances and atmospheric parameters of stars in the core program of the PLATO mission
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the SAPP (Stellar Abundances and atmospheric Parameters Pipeline), the prototype of the code that will be used to determine parameters of stars observed within the core program of the PLATO space mission. The pipeline is based on the Bayesian inference and provides effective temperature, surface gravity, metallicity, chemical abundances, and luminosity. The code in its more general version has a much wider range of potential applications. It can also provide masses, ages, and radii of stars and can be used with stellar types not targeted by the PLATO core program, such as red giants. We validate the code on a set of 27 benchmark stars that includes 19 FGK-type dwarfs, 6 GK-type subgiants, and 2 red giants. Our results suggest that combining various observables is the optimal approach, as this allows the degeneracies between different parameters to be broken and yields more accurate values of stellar parameters and more realistic uncertainties. For the PLATO core sample, we obtain a typical uncertainty of 27 (syst.) +/- 37 (stat.) K for T-eff, 0.00 +/- 0.01 dex for log g, 0.02 +/- 0.02 dex for metallicity [Fe/H], -0.01 +/- 0.03 R-circle dot for radii, -0.01 +/- 0.05 M-circle dot for stellar masses, and -0.14 +/- 0.63 Gyr for ages. We also show that the best results are obtained by combining the nu(max) scaling relation with stellar spectra. This resolves the notorious problem of degeneracies, which is particularly important for F-type stars.
  •  
3.
  • Kraus, Stefan, et al. (författare)
  • Planet Formation Imager (PFI) : Science vision and key requirements
  • 2016
  • Ingår i: Optical and Infrared Interferometry and Imaging V. - : SPIE. - 9781510601932 ; 9907
  • Konferensbidrag (refereegranskat)abstract
    • The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to ∼100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
  •  
4.
  • Kravchenko, Kateryna, et al. (författare)
  • Tomography of cool giant and supergiant star atmospheres : III. Validation of the method on VLTI/AMBER observations of the Mira star S Ori
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Asymptotic giant branch (AGB) stars are characterized by substantial mass loss, however the mechanism behind it not yet fully understood. The knowledge of the structure and dynamics of AGB-star atmospheres is crucial to better understanding the mass loss. The recently established tomographic method, which relies on the design of spectral masks containing lines that form in given ranges of optical depths in the stellar atmosphere, is an ideal technique for this purpose.Aims. We aim to validate the capability of the tomographic method in probing different geometrical depths in the stellar atmosphere and recovering the relation between optical and geometrical depth scales.Methods. We applied the tomographic method to high-resolution spectro-interferometric VLTI/AMBER observations of the Mira-type AGB star S Ori. The interferometric visibilities were extracted at wavelengths contributing to the tomographic masks and fitted to those computed from a uniform disk model. This allows us to measure the geometrical extent of the atmospheric layer probed by the corresponding mask. We then compared the observed atmospheric extension with others measured from available 1D pulsation CODEX models and 3D radiative-hydrodynamics CO5BOLD simulations.Results. While the average optical depths probed by the tomographic masks in S Ori decrease (with log tau(0) = -0.45, - 1.45, and - 2.45 from the innermost to the central and outermost layers), the angular diameters of these layers increase, from 10.59 0.09 mas through 11.84 +/- 0.17 mas, up to 14.08 +/- 0.15 mas. A similar behavior is observed when the tomographic method is applied to 1D and 3D dynamical models.Conclusions. This study derives, for the first time, a quantitative relation between optical and geometrical depth scales when applied to the Mira star S Ori, or to 1D and 3D dynamical models. In the context of Mira-type stars, knowledge of the link between the optical and geometrical depths opens the way to deriving the shock-wave propagation velocity, which cannot be directly observed in these stars.
  •  
5.
  • Ma, Jing-Ze, et al. (författare)
  • Is Betelgeuse Really Rotating? : Synthetic ALMA Observations of Large-scale Convection in 3D Simulations of Red Supergiants
  • 2024
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 962:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolved stages of massive stars are poorly understood, but invaluable constraints can be derived from spatially resolved observations of nearby red supergiants, such as Betelgeuse. Atacama Large Millimeter/submillimeter Array (ALMA) observations of Betelgeuse showing a dipolar velocity field have been interpreted as evidence for a projected rotation rate of about 5 km s−1. This is 2 orders of magnitude larger than predicted by single-star evolution, which led to suggestions that Betelgeuse is a binary merger. We propose instead that large-scale convective motions can mimic rotation, especially if they are only partially resolved. We support this claim with 3D CO5BOLD simulations of nonrotating red supergiants that we postprocessed to predict ALMA images and SiO spectra. We show that our synthetic radial velocity maps have a 90% chance of being falsely interpreted as evidence for a projected rotation rate of 2 km s−1 or larger for our fiducial simulation. We conclude that we need at least another ALMA observation to firmly establish whether Betelgeuse is indeed rapidly rotating. Such observations would also provide insight into the role of angular momentum and binary interaction in the late evolutionary stages. The data will further probe the structure and complex physical processes in the atmospheres of red supergiants, which are immediate progenitors of supernovae and are believed to be essential in the formation of gravitational-wave sources.
  •  
6.
  • Roederer, Ian U., et al. (författare)
  • The discovery space of ELT-ANDES. Stars and stellar populations
  • 2024
  • Ingår i: Experimental Astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The ArmazoNes high Dispersion Echelle Spectrograph (ANDES) is the optical and near-infrared high-resolution echelle spectrograph envisioned for the Extremely Large Telescope (ELT). We present a selection of science cases, supported by new calculations and simulations, where ANDES could enable major advances in the fields of stars and stellar populations. We focus on three key areas, including the physics of stellar atmospheres, structure, and evolution; stars of the Milky Way, Local Group, and beyond; and the star-planet connection. The key features of ANDES are its wide wavelength coverage at high spectral resolution and its access to the large collecting area of the ELT. These features position ANDES to address the most compelling questions and potentially transformative advances in stellar astrophysics of the decades ahead, including questions which cannot be anticipated today.
  •  
7.
  • Zwitter, Tomaz, et al. (författare)
  • The GALAH survey : accurate radial velocities and library of observed stellar template spectra
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:1, s. 645-654
  • Tidskriftsartikel (refereegranskat)abstract
    • GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342 682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km s(-1) for 336 215 of these stars, achievable due to the large wavelength coverage, high resolving power, and good signal-to-noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra that are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28 000 and trace the well-populated stellar types with metallicities between -0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations, and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy