SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Christianson Helena C.) "

Sökning: WFRF:(Christianson Helena C.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Menard, Julien A., et al. (författare)
  • Metastasis Stimulation by Hypoxia and Acidosis-Induced Extracellular Lipid Uptake Is Mediated by Proteoglycan-Dependent Endocytosis
  • 2016
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 76:16, s. 4828-4840
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia and acidosis are inherent stress factors of the tumor microenvironment and have been linked to increased tumor aggressiveness and treatment resistance. Molecules involved in the adaptive mechanisms that drive stress-induced disease progression constitute interesting candidates of therapeutic intervention. Here, we provide evidence of a novel role of heparan sulfate proteoglycans (HSPG) in the adaptive response of tumor cells to hypoxia and acidosis through increased internalization of lipoproteins, resulting in a lipid-storing phenotype and enhanced tumor-forming capacity. Patient glioblastoma tumors and cells under hypoxic and acidic stress acquired a lipid droplet (LD)-loaded phenotype, and showed an increased recruitment of all major lipoproteins, HDL, LDL, and VLDL. Stress-induced LD accumulation was associated with increased spheroid-forming capacity during reoxygenation in vitro and lung metastatic potential in vivo. On a mechanistic level, we found no apparent effect of hypoxia on HSPGs, whereas lipoprotein receptors (VLDLR and SR-B1) were transiently upregulated by hypoxia. Importantly, however, using pharmacologic and genetic approaches, we show that stress-mediated lipoprotein uptake is highly dependent on intact HSPG expression. The functional relevance of HSPG in the context of tumor cell stress was evidenced by HSPG-dependent lipoprotein cell signaling activation through the ERK/MAPK pathway and by reversal of the LD-loaded phenotype by targeting of HSPGs. We conclude that HSPGs may have an important role in the adaptive response to major stress factors of the tumor microenvironment, with functional consequences on tumor cell signaling and metastatic potential.
  •  
2.
  • Cerezo-Magaña, Myriam, et al. (författare)
  • Hypoxic induction of exosome uptake through proteoglycan-dependent endocytosis fuels the lipid droplet phenotype in Glioma
  • 2021
  • Ingår i: Molecular Cancer Research. - : American Association For Cancer Research (AACR). - 1541-7786 .- 1557-3125. ; 19:3, s. 528-540
  • Tidskriftsartikel (refereegranskat)abstract
    • As an adaptive response to hypoxic stress, aggressive tumors rewire their metabolic phenotype into increased malignant behavior through extracellular lipid scavenging and storage in lipid droplets (LD). However, the underlying mechanisms and potential lipid source retrieved in the hypoxic tumor microenvironment remain poorly understood. Here, we show that exosome-like extracellular vesicles (EV), known as influential messengers in the tumor microenvironment, may also serve anabolic functions by transforming hypoxic, patient-derived human glioblastoma cell lines into the LDþ phenotype. EVs were internalized via a hypoxia-sensitive, endocytic mechanism that fueled LD formation through direct lipid transfer, and independently of fatty acid synthase activity. EVs can enter cells through multiple and yet ill-defined pathways. On a mechanistic level, we found that hypoxia-mediated EV uptake depends on increased heparan sulfate proteoglycan (HSPG) endocytosis that preferentially followed the lipid raft pathway. The functional relevance of HSPG was evidenced by the reversal of EV-mediated LD loading by targeting of HSPG receptor function.
  •  
3.
  • Christianson, Helena C, et al. (författare)
  • Tumor antigen glycosaminoglycan modification regulates antibody-drug conjugate delivery and cytotoxicity
  • 2017
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:40, s. 66960-66974
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggressive cancers are characterized by hypoxia, which is a key driver of tumor development and treatment resistance. Proteins specifically expressed in the hypoxic tumor microenvironment thus represent interesting candidates for targeted drug delivery strategies. Carbonic anhydrase (CAIX) has been identified as an attractive treatment target as it is highly hypoxia specific and expressed at the cell-surface to promote cancer cell aggressiveness. Here, we find that cancer cell internalization of CAIX is negatively regulated by post-translational modification with chondroitin or heparan sulfate glycosaminoglycan chains. We show that perturbed glycosaminoglycan modification results in increased CAIX endocytosis. We hypothesized that perturbation of CAIX glycosaminoglycan conjugation may provide opportunities for enhanced drug delivery to hypoxic tumor cells. In support of this concept, pharmacological inhibition of glycosaminoglycan biosynthesis with xylosides significantly potentiated the internalization and cytotoxic activity of an antibody-drug conjugate (ADC) targeted at CAIX. Moreover, cells expressing glycosaminoglycan-deficient CAIX were significantly more sensitive to ADC treatment as compared with cells expressing wild-type CAIX. We find that inhibition of CAIX endocytosis is associated with an increased localization of glycosaminoglycan-conjugated CAIX in membrane lipid raft domains stabilized by caveolin-1 clusters. The association of CAIX with caveolin-1 was partially attenuated by acidosis, i.e. another important feature of malignant tumors. Accordingly, we found increased internalization of CAIX at acidic conditions. These findings provide first evidence that intracellular drug delivery at pathophysiological conditions of malignant tumors can be attenuated by tumor antigen glycosaminoglycan modification, which is of conceptual importance in the future development of targeted cancer treatments.
  •  
4.
  • Svensson, Katrin, et al. (författare)
  • Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells.
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 108:32, s. 13147-13152
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein-coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2-mediated activation of hypoxic ECs. We show that PAR-2-dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2-dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa-dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2-mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy