SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chrysis D) "

Sökning: WFRF:(Chrysis D)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Benjamin, RW, et al. (författare)
  • Hypercalcemia in children
  • 2008
  • Ingår i: Pediatric endocrinology reviews : PER. - 1565-4753. ; 5:3, s. 778-84
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  •  
7.
  • Chagin, AS, et al. (författare)
  • Locally produced estrogen promotes fetal rat metatarsal bone growth; an effect mediated through increased chondrocyte proliferation and decreased apoptosis
  • 2006
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 188:2, s. 193-203
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of estrogens for the regulation of longitudinal bone growth is unequivocal. However, any local effect of estrogens in growth plate cartilage has been debated. Recently, several enzymes essential for estrogen synthesis were shown to be expressed in rat growth plate chondrocytes. Local production of 17β-estradiol (E2) has also been demonstrated in rat costal chondrocytes. We aimed to determine the functional role of locally produced estrogen in growth plate cartilage. The human chondrocyte-like cell line HCS-2/8 was used to study estrogen effects on cell proliferation (3H-labeled thymidine uptake) and apoptosis (cell death detection ELISA kit). Chondrocyte production of E2 was measured by RIA and organ cultures of fetal rat metatarsal bones were used to study the effects of estrogen on longitudinal growth rate. We found that significant amounts of E2 were produced by HCS-2/8 chondrocytes (64.1 ± 5.3 fmol/3 days/106cells). The aromatase inhibitor letrozole (1 μM) and the pure estrogen receptor antagonist ICI 182,780 (10 μM) inhibited proliferation of HCS-2/8 chondrocytes by 20% (P<0.01) and almost 50% (P<0.001), respectively. Treatment with ICI 182,780 (10 μM) increased apoptosis by 228% (P<0.05). Co-treatment with either caspase-3 or pan-caspase inhibitors completely blocked ICI 182,780-induced apoptosis (P<0.001 vs ICI 182,780 only). Moreover, both ICI 182,780 (10 μM) and letrozole (1 μM) decreased longitudinal growth of fetal rat metatarsal bones after 7 days of culture (P<0.01). In conclusion, our data clearly show that chondrocytes endogenously produce E2 and that locally produced estrogen stimulates chondrocyte proliferation and protects from spontaneous apoptosis. In addition, longitudinal growth is promoted by estrogens locally produced within the epiphyseal growth plate.
  •  
8.
  •  
9.
  •  
10.
  • Chrysis, D, et al. (författare)
  • Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3'-kinase signaling pathway
  • 2005
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 146:3, s. 1391-1397
  • Tidskriftsartikel (refereegranskat)abstract
    • Although glucocorticoids are known to induce apoptosis in chondrocytes, the mechanisms for this effect and the potential antiapoptotic role of IGF-I are unknown. To address this, we studied the effects of dexamethasone (Dexa) on apoptosis in the HCS-2/8 chondrocytic cell line. Dexa (25 μm) increased apoptosis (cell death ELISA) by 39% and 45% after 48 and 72 h, respectively (P &lt; 0.01 and P &lt; 0.05, respectively). IGF-I (100 ng/ml) decreased Dexa-induced apoptosis to levels similar to control cells. Apoptosis was associated with cleavage of poly-ADP-ribose polymerase (PARP) and α-fodrin and activation of caspases-8, -9, and -3 (Western), an effect that was counteracted when chondrocytes were cocultured with Dexa + IGF-I. Inhibitors for caspases-8, -9, and -3 (50 μm each) equally suppressed Dexa-induced apoptosis (P &lt; 0.01). Time-response experiments showed that caspase-8 was activated earlier (at 12 h) than caspase-9 (at 36 h). We studied the phosphatidylinositol 3′-kinase (PI3K) pathway to further investigate the mechanisms of Dexa-induced apoptosis. Dexa decreased Akt phosphorylation by 93% (P &lt; 0.001) without affecting total Akt and increased the p85α subunit 4-fold. The Akt inhibitor SH-6 (10 μm) increased apoptosis by 54% (P &lt; 0.001). When combining Dexa with SH-6, apoptosis was not further increased, showing that Dexa-induced apoptosis is mediated through inhibition of the PI3K pathway. Addition of IGF-I to SH-6- or Dexa + SH-6-treated cells decreased apoptosis by 21.2% (P &lt; 0.001) and 20.6% (P &lt; 0.001), respectively. We conclude that Dexa-induced apoptosis is caspase dependent with an early activation of caspase-8. IGF-I can rescue chondrocytes from Dexa-induced apoptosis partially through the activation of other pathways than the PI3K signaling pathway. Based on our in vitro data, we speculate that in vivo treatment with glucocorticoids may diminish longitudinal growth by increasing apoptosis of proliferative growth plate chondrocytes.
  •  
11.
  • Chrysis, D, et al. (författare)
  • Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes
  • 2003
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 176:3, s. 331-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoids cause significant growth retardation in mammals and humans and decreased proliferation of chondrocytes has been considered as the main local mechanism. Death by apoptosis is an important regulator of homeostasis in multicellular organisms. Here we chose to study the role of apoptosis in growth retardation caused by glucocorticoid treatment. We treated 7-week-old male rats with dexamethasone (5 mg/kg/day) for 7 days. Apoptosis was studied in tibiae growth plates by the TUNEL method. Immunoreactivity for parathyroid hormone-related peptide (PTHrP), caspase-3, and the anti-apoptotic proteins Bcl-2 and Bcl-x was also studied. Apoptosis was mainly localized in terminal hypertropic chondrocytes (THCs) in both control and dexamethasone-treated animals. Dexamethasone caused an increase in apoptosis which was fourfold in THCs (2.45+/-0.12 vs 0.62+/-0.09 apoptotic cells/mm growth plate, P<0.001), and 18-fold in proliferative chondrocytes (0.18+/-0.04 vs 0.01+/-0.007 apoptotic cells/mm growth plate, P<0.001). Increased apoptosis after dexamethasone treatment was accompanied by increased immunoreactivity for caspase-3 and decreased immunoreactivity for the anti-apoptotic proteins Bcl-2 and Bcl-x, which further supports our apoptosis results. Dexamethasone also decreased the immunoreactivity for PTHrP, suggesting a role in the mechanism by which glucocorticoids induce apoptosis in the growth plate. We conclude that apoptosis is one mechanism involved in growth retardation induced by glucocorticoids. Premature loss of resting/proliferative chondrocytes by apoptosis could contribute to incomplete catch-up seen after prolonged glucocorticoid treatment.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Nilsson, O, et al. (författare)
  • Estrogen receptor-alpha and -beta are expressed throughout postnatal development in the rat and rabbit growth plate
  • 2002
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 173:3, s. 407-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen regulates skeletal growth and promotes epiphyseal fusion. To explore the mechanisms underlying these effects we investigated the expression of estrogen receptor-alpha (ERalpha) and -beta (ERbeta) in rat and rabbit growth plates during postnatal development, using immunohistochemistry. Immunoreactivity for ERalpha and ERbeta was observed in resting zone and proliferative zone chondrocytes at all ages studied for both rat (7, 14, 28 and 70 days of age) and rabbit (1, 7, 28 and 120 days of age). In the rat distal humerus and the rabbit proximal tibia, expression of both receptors in the hypertrophic zone was minimal at early ages, increasing only at the last time point prior to epiphyseal fusion. Expression was rarely seen in the hypertrophic zone of the rat proximal tibia, a growth plate that does not fuse until late in life. Therefore, we conclude that ERalpha and ERbeta are both expressed in the mammalian growth plate. The temporal and anatomical pattern suggests that ER expression in the hypertrophic zone in particular may play a role in epiphyseal fusion.
  •  
20.
  • Nilsson, O, et al. (författare)
  • Localization of estrogen receptors-alpha and -beta and androgen receptor in the human growth plate at different pubertal stages
  • 2003
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 177:2, s. 319-326
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex steroids are required for a normal pubertal growth spurt and fusion of the human epiphyseal growth plate. However, the localization of sex steroid receptors in the human pubertal growth plate remains controversial. We have investigated the expression of estrogen receptor (ER) alpha, ERbeta and androgen receptor (AR) in biopsies of proximal tibial growth plates obtained during epiphyseal surgery in 16 boys and eight girls. All pubertal stages were represented (Tanner stages 1-5). ERalpha, ERbeta and AR were visualized with immunohistochemistry and the number of receptor-positive cells was counted using an image analysis system. Percent receptor-positive chondrocytes were assessed in the resting, proliferative and hypertrophic zones and evaluated for sex differences and pubertal trends. Both ERalpha- and ERbeta-positive cells were detected at a greater frequency in the resting and proliferative zones than in the hypertrophic zone (64+/-2%, 64+/-2% compared with 38+/-3% for ERalpha, and 63+/-3%, 66+/-3% compared with 53+/-3% for ERbeta), whereas AR was more abundant in the resting (65+/-3%) and hypertrophic zones (58+/-3%) than in the proliferative zone (41+/-3%). No sex difference in the patterns of expression was detected. For ERalpha and AR, the percentage of receptor-positive cells was similar at all Tanner pubertal stages, whereas ERbeta showed a slight decrease in the proliferative zone during pubertal development (P<0.05). In summary, our findings suggest that ERalpha, ERbeta and AR are expressed in the human growth plate throughout pubertal development, with no difference between the sexes.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Zaman, F., et al. (författare)
  • Humanin is a novel regulator of Hedgehog signaling and prevents glucocorticoid-induced bone growth impairment
  • 2019
  • Ingår i: Faseb Journal. - 0892-6638. ; 33:4, s. 4962-4974
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoids (GCs) are frequently used to treat chronic disorders in children, including inflammation and cancer. Prolonged treatment with GCs is well known to impair bone growth, an effect linked to increased apoptosis and suppressed proliferation in growth plate chondrocytes. We hypothesized that the endogenous antiapoptotic protein humanin (HN) may prevent these effects. Interestingly, GC-induced bone growth impairment and chondrocyte apoptosis was prevented in HN overexpressing mice, HN-treated wild-type mice, and in HN-treated cultured rat metatarsal bones. GC-induced suppression of chondrocyte proliferation was also prevented by HN. Furthermore, GC treatment reduced Indian Hedgehog expression in growth plates of wild-type mice but not in HN overexpressing mice or HN-treated wild-type animals. A Hedgehog (Hh) antagonist, vismodegib, was found to suppress the growth of cultured rat metatarsal bones, and this effect was also prevented by HN. Importantly, HN did not interfere with the desired anti-inflammatory effects of GCs. We conclude that HN is a novel regulator of Hh signaling preventing GC-induced bone growth impairment without interfering with desired effects of GCs. Our data may open for clinical studies exploring a new possible strategy to prevent GC-induced bone growth impairment by cotreating with HN.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy