SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cirelli M.) "

Sökning: WFRF:(Cirelli M.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Abdalla, H., et al. (författare)
  • Searches for gamma-ray lines and 'pure WIMP' spectra from Dark Matter annihilations in dwarf galaxies with HESS
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • Dwarf spheroidal galaxies are among the most promising targets for detecting signals of Dark Matter (DM) annihilations. The H.E.S.S. experiment has observed five of these systems for a total of about 130 hours. The data are re-analyzed here, and, in the absence of any detected signals, are interpreted in terms of limits on the DM annihilation cross section. Two scenarios are considered: i) DM annihilation into mono-energetic gamma-rays and ii) DM in the form of pure WIMP multiplets that, annihilating into all electroweak bosons, produce a distinctive gamma-ray spectral shape with a high-energy peak at the DM mass and a lower-energy continuum. For case i), upper limits at 95% confidence level of about less than or similar to 3 x 10(-25) cm(3) s(-1) are obtained in the mass range of 400 GeV to 1TeV. For case ii), the full spectral shape of the models is used and several excluded regions are identified, but the thermal masses of the candidates are not robustly ruled out.
  •  
4.
  • Gruhl, T., et al. (författare)
  • Ultrafast structural changes direct the first molecular events of vision
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 615, s. 939-944
  • Tidskriftsartikel (refereegranskat)abstract
    • Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)(1). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation(2), thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature(3) to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.
  •  
5.
  • Sabbar, M., et al. (författare)
  • Resonance Effects in Photoemission Time Delays
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 115:13
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of single-photon ionization time delays between the outermost valence electrons of argon and neon using a coincidence detection technique that allows for the simultaneous measurement of both species under identical conditions. The analysis of the measured traces reveals energy-dependent time delays of a few tens of attoseconds with high energy resolution. In contrast to photoelectrons ejected through tunneling, single-photon ionization can be well described in the framework of Wigner time delays. Accordingly, the overall trend of our data is reproduced by recent Wigner time delay calculations. However, besides the general trend we observe resonance features occurring at specific photon energies. These features have been qualitatively reproduced and identified by a calculation using the multiconfigurational Hartree-Fock method, including the influence of doubly excited states and ionization thresholds.
  •  
6.
  • Banerjee, Ambar, 1985-, et al. (författare)
  • Accessing metal-specific orbital interactions in C–H activation with resonant inelastic X-ray scattering
  • 2024
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 15:7, s. 2398-2409
  • Tidskriftsartikel (refereegranskat)abstract
    • Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C–H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C–H group and the transition metal is the decisive interaction in the C–H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal–alkane interactions during transition-metal mediated C–H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)2), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C–H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C–H group and the transition metal as the reaction proceeds via those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO)2 and Rh(acac)(CO)2 (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C–H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
  •  
7.
  • Båth, Petra, 1988, et al. (författare)
  • Lipidic cubic phase serial femtosecond crystallography structure of a photosynthetic reaction centre
  • 2022
  • Ingår i: Acta Crystallographica Section D-Structural Biology. - : International Union of Crystallography (IUCr). - 2059-7983. ; 78, s. 698-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 angstrom resolution when exposed to XFEL radiation, which is an improvement of 0.15 angstrom over previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile Q(B) pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.
  •  
8.
  • Flores, H., et al. (författare)
  • Impact of climate change on Antarctic krill
  • 2012
  • Ingår i: Marine Ecology-Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 458, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Antarctic krill Euphausia superba (hereafter 'krill') occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has in creased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved. [GRAPHICS] .
  •  
9.
  • Jay, Raphael, et al. (författare)
  • Tracking C–H activation with orbital resolution
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648, s. 955-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal reactivity toward carbon-hydrogen (C-H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex. Changes in oxidation state as well as valence-orbital energies and character emerge in the data on a femtosecond to nanosecond timescale. The x-ray spectroscopic signatures reflect how alkane-to-metal donation determines metal-alkane complex stability and how metal-to-alkane back-donation facilitates C-H bond cleavage by oxidative addition. The ability to dissect charge-transfer interactions on an orbital level provides opportunities for manipulating C-H reactivity at transition metals.
  •  
10.
  • Leguizamon, N. D., et al. (författare)
  • Phytocystatin CsinCPI-2 Reduces Osteoclastogenesis and Alveolar Bone Loss
  • 2022
  • Ingår i: Journal of Dental Research. - : SAGE Publications. - 0022-0345 .- 1544-0591. ; 101:2, s. 216-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontal disease (PD) is a polymicrobial chronic inflammatory condition of the supporting tissues around the teeth, leading to the destruction of surrounding connective tissue. During the progression of PD, osteoclasts play a crucial role in the resorption of alveolar bone that eventually leads to the loss of teeth if the PD is left untreated. Therefore, the development of antiresorptive therapies targeting bone-resorbing cells will significantly benefit the treatment of PD. Here, we demonstrate the inhibitory effect of CsinCPI-2, a novel cysteine peptidase inhibitor from the orange tree, on periodontitis-induced inflammation, alveolar bone loss, and osteoclast differentiation. Using the ligature-induced periodontitis model in mice, we show that treatment with CsinCPI-2 (0.8 mu g/g of body weight) significantly reduced inflammatory cell infiltrate in the connective tissue and prevented the loss of alveolar bone mass (BV/TV) caused by PD, effects associated with diminished numbers of TRAP-positive multinucleated cells. Furthermore, CsinCPI-2 significantly downregulated the numbers of inflammatory cells expressing CD3, CD45, MAC387, and IL-1 beta. In vitro, CsinCPI-2 inhibited RANKL-induced TRAP+ multinucleated osteoclast formation in mouse bone marrow macrophage cultures in a concentration-dependent manner. This effect was not due to cytotoxicity, as demonstrated by the MTT assay. CsinCPI-2 inhibited RANKL-induced mRNA expression of Acp5, Calcr, and Ctsk, as well as the RANKL-induced upregulation of Nfatc1, a crucial transcription factor for osteoclast differentiation. Based on our findings, CsinCPI-2 prevents bone loss induced by PD by controlling the inflammatory process and acting directly on osteoclastogenesis, suggesting an interesting potential for CsinCPI-2 in the strategy for PD treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy