SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clarke Adrian K 1964) "

Sökning: WFRF:(Clarke Adrian K 1964)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Andersson, Fredrik, 1977, et al. (författare)
  • Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 281:9, s. 5468-5475
  • Tidskriftsartikel (refereegranskat)abstract
    • HSP100 proteins are molecular chaperones that belong to the broader family of AAA+ proteins ( ATPases associated with a variety of cellular activities) known to promote protein unfolding, disassembly of protein complexes and translocation of proteins across membranes. The ClpC form of HSP100 is an essential, highly conserved, constitutively expressed protein in cyanobacteria and plant chloroplasts, and yet little is known regarding its specific activity as a molecular chaperone. To address this point, ClpC from the cyanobacterium Synechococcus elongatus (SyClpC) was purified using an Escherichia coli-based overexpression system. Recombinant SyClpC showed basal ATPase activity, similar to that of other types of HSP100 protein in non-photosynthetic organisms but different to ClpC in Bacillus subtilis. SyClpC also displayed distinct intrinsic chaperone activity in vitro, first by preventing aggregation of unfolded polypeptides and second by resolubilizing and refolding aggregated proteins into their native structures. The refolding activity of SyClpC was enhanced 3-fold in the presence of the B. subtilis ClpC adaptor protein MecA. Overall, the distinctive ClpC protein in photosynthetic organisms indeed functions as an independent molecular chaperone, and it is so far unique among HSP100 proteins in having both "holding" and disaggregase chaperone activities without the need of other chaperones or adaptor proteins.
  •  
3.
  • Barker-Astrom, K., et al. (författare)
  • Chlorosis during nitrogen starvation is altered by carbon dioxide and temperature status and is mediated by the ClpP1 protease in Synechococcus elongatus
  • 2005
  • Ingår i: Archives of Microbiology. - : Springer Science and Business Media LLC. - 0302-8933 .- 1432-072X. ; 183:1, s. 66-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The interactive effects of inorganic carbon status, temperature and light on chlorosis induced by nitrogen deficiency, and the roles of Clp proteases in this process were investigated. In wild-type cultures grown in high or ambient CO2, following transfer to media lacking combined nitrogen, phycocyanin per cell dropped primarily through dilution of the pigment through cell division, and also suffered variable degrees of net degradation. When grown at high CO2 (5%), chlorophyll (Chl) suffered net degradation to a greater extent than phycocyanin. In marked contrast, growth at ambient CO2 resulted in Chl per cell dropping through dilution. Conditions that drove net Chl degradation in the wild-type resulted in little or no net Chl degradation in a clpPI inactivation mutant, with Chl content dropping largely through growth dilution in the mutant. The chlorotic response of a clpPII inactivation strain was nearly the same as that of wild-type, although phycocyanin degradation may have been slightly accelerated in the former.
  •  
4.
  • Eriksson, Martin, 1970, et al. (författare)
  • Community-Level Analysis of psbA Gene Sequences and Irgarol Tolerance in Marine Periphyton
  • 2009
  • Ingår i: Applied and Environmental Microbiology. - Washington, D.C. : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 75:4, s. 897-906
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyzes psbA gene sequences, predicted D1 protein sequences, species relative abundance, and pollution-induced community tolerance in marine periphyton communities exposed to the antifouling compound Irgarol 1051. The mechanism of action of Irgarol is the inhibition of photosynthetic electron transport at photosystem II by binding to the D1 protein. The metagenome of the communities was used to produce clone libraries containing fragments of the psbA gene encoding the D1 protein. Community tolerance was quantified with a short-term test for the inhibition of photosynthesis. The communities were established in a continuous flow of natural seawater through microcosms with or without added Irgarol. The selection pressure from Irgarol resulted in an altered species composition and an inducted community tolerance to Irgarol. Moreover, there was a very high diversity in the psbA gene sequences in the periphyton, and the composition of psbA and D1 fragments within the communities was dramatically altered by increased Irgarol exposure. Even though tolerance to this type of compound in land plants often depends on a single amino acid substitution (Ser(264)-> Gly) in the D1 protein, this was not the case for marine periphyton species. Instead, the tolerance mechanism likely involves increased degradation of D1. When we compared sequences from low and high Irgarol exposure, differences in nonconserved amino acids were found only in the so-called PEST region of D1, which is involved in regulating its degradation. Our results suggest that environmental contamination with Irgarol has led to selection for high-turnover D1 proteins in marine periphyton communities at the west coast of Sweden.
  •  
5.
  • Gómez-Martínez, Daniela, et al. (författare)
  • Phenotypic and transcriptomic acclimation of the green microalga Raphidocelis subcapitata to high environmental levels of the herbicide diflufenican
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 875
  • Tidskriftsartikel (refereegranskat)abstract
    • Herbicide pollution poses a worldwide threat to plants and freshwater ecosystems. However, the understanding of how organisms develop tolerance to these chemicals and the associated trade-off expenses are largely unknown. This study aims to investigate the physiological and transcriptional mechanisms underlying the acclimation of the green microalgal model species Raphidocelis subcapitata (Selenastraceae) towards the herbicide diflufenican, and the fitness costs associated with tolerance development. Algae were exposed for 12 weeks (corresponding to 100 generations) to diflufenican at the two environmental concentrations 10 and 310 ng/L. The monitoring of growth, pigment composition, and photosynthetic performance throughout the experiment revealed an initial dose-dependent stress phase (week 1) with an EC50 of 397 ng/L, followed by a time-dependent recovery phase during weeks 2 to 4. After week 4, R. subcapitata was acclimated to diflufenican exposure with a similar growth rate, content of carotenoids, and photosynthetic performance as the unexposed control algae. This acclimation state of the algae was explored in terms of tolerance acquisition, changes in the fatty acids composition, diflufenican removal rate, cell size, and changes in mRNA gene expression profile, revealing potential fitness costs associated with acclimation, such as up-regulation of genes related to cell division, structure, morphology, and reduction of cell size. Overall, this study demonstrates that R. subcapitata can quickly acclimate to environmental but toxic levels of diflufenican; however, the acclimation is associated with trade-off expenses that result in smaller cell size.
  •  
6.
  • Saini, G., et al. (författare)
  • 'happy on norflurazon' (hon) mutations implicate perturbance of plastid homeostasis with activating stress acclimatization and changing nuclear gene expression in norflurazon-treated seedlings
  • 2011
  • Ingår i: Plant Journal. - 0960-7412. ; 65:5, s. 690-702
  • Tidskriftsartikel (refereegranskat)abstract
    • P>Various mutant screens have been undertaken to identify constituents involved in the transmission of signals from the plastid to the nucleus. Many of these screens have been performed using carotenoid-deficient plants grown in the presence of norflurazon (NF), an inhibitor of phytoene desaturase. NF-treated plants are bleached and suppress the expression of nuclear genes encoding chloroplast proteins. Several genomes uncoupled (gun) mutants have been isolated that de-repress the expression of these nuclear genes. In the present study, a genetic screen has been established that circumvents severe photo-oxidative stress in NF-treated plants. Under these modified screening conditions, happy on norflurazon (hon) mutants have been identified that, like gun mutants, de-repress expression of the Lhcb gene, encoding a light-harvesting chlorophyll protein, but, in contrast to wild-type and gun mutants, are green in the presence of NF. hon mutations disturb plastid protein homeostasis, thereby activating plastid signaling and inducing stress acclimatization. Rather than defining constituents of a retrograde signaling pathway specifically associated with the NF-induced suppression of nuclear gene expression, as proposed for gun, hon mutations affect Lhcb expression more indirectly prior to initiation of plastid signaling in NF-treated seedlings. They pre-condition seedlings by inducing stress acclimatization, thereby attenuating the impact of a subsequent NF treatment.
  •  
7.
  • Tryggvesson, Anders, 1975, et al. (författare)
  • Interaction specificity between the chaperone and proteolytic components of the cyanobacterial Clp protease
  • 2012
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021 .- 1470-8728. ; 446, s. 311-320
  • Tidskriftsartikel (refereegranskat)abstract
    • The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.
  •  
8.
  •  
9.
  • Andersson, Fredrik, 1977, et al. (författare)
  • Structure and function of a novel type of ATP-dependent Clp protease.
  • 2009
  • Ingår i: The Journal of biological chemistry. - 0021-9258 .- 1083-351X. ; 284:20, s. 13519-32
  • Tidskriftsartikel (refereegranskat)abstract
    • The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. The main constitutive Clp protease in photosynthetic organisms has evolved into a functionally essential and structurally intricate enzyme. The model Clp protease from the cyanobacterium Synechococcus consists of the HSP100 molecular chaperone ClpC and a mixed proteolytic core comprised of two distinct subunits, ClpP3 and ClpR. We have purified the ClpP3/R complex, the first for a Clp proteolytic core comprised of heterologous subunits. The ClpP3/R complex has unique functional and structural features, consisting of twin heptameric rings each with an identical ClpP3(3)ClpR(4) configuration. As predicted by its lack of an obvious catalytic triad, the ClpR subunit is shown to be proteolytically inactive. Interestingly, extensive modification to ClpR to restore proteolytic activity to this subunit showed that its presence in the core complex is not rate-limiting for the overall proteolytic activity of the ClpCP3/R protease. Altogether, the ClpP3/R complex shows remarkable similarities to the 20 S core of the proteasome, revealing a far greater degree of convergent evolution than previously thought between the development of the Clp protease in photosynthetic organisms and that of the eukaryotic 26 S proteasome.
  •  
10.
  •  
11.
  •  
12.
  • Clarke, Adrian K, 1964, et al. (författare)
  • The ATP-dependent Clp protease in chloroplasts of higher plants
  • 2005
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 123:4, s. 406-412
  • Tidskriftsartikel (refereegranskat)abstract
    • The best-known proteases in plastids are those that belong to families common to eubacteria. One of the first identified was the ATP-dependent caseinolytic protease (Clp), whose structure and function have been well characterized in Escherichia coli. Plastid Clp proteins in higher plants are surprisingly numerous and diverse, with at least 16 distinct Clp proteins in the model plant Arabidopsis thaliana. Multiple paralogues exist for several of the different types of plastid Clp protein, with the most extreme being five for the proteolytic subunit ClpP. Both biochemical and genetic studies have recently begun to reveal the intricate structural interactions between the various Clp proteins, and their importance for chloroplast function and plant development. Much of the recent data suggests that the function of many of the Clp proteins probably affects more specific processes within chloroplasts, in addition to the more general 'housekeeping' role previously assumed.
  •  
13.
  • Clarke, Adrian K, 1964 (författare)
  • The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges
  • 2012
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317. ; 145:1, s. 235-244
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATP-dependent Clp protease is by far the most intricate protease in chloroplasts of vascular plants. Structurally, it is particularly complex with a proteolytic core complex containing 11 distinct subunits along with three potential chaperone partners. The Clp protease is also essential for chloroplast development and overall plant viability. Over the past decade, many of the important characteristics of this crucial protease have been revealed in the model plant species Arabidopsis thaliana. Despite this, challenges still remain in fully resolving certain key features, in particular, how the assembly of this multisubunit protease is regulated, the full range of native protein substrates and how they are targeted for degradation and how this complicated enzyme might have developed from simpler bacterial forms. This article focuses upon the recent advances in revealing the details underlying these important features. It also take the opportunity to speculate upon many of these findings in the hope of stimulating further investigation.
  •  
14.
  • Eriksson, Martin, 1970, et al. (författare)
  • A phylogenetic approach to detect selection on the target site of the antifouling compound irgarol in tolerant periphyton communities
  • 2009
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 11:8, s. 2065-2077
  • Tidskriftsartikel (refereegranskat)abstract
    • Using DNA sequence data for phylogenetic assessment of toxicant targets is a new and promising approach to study toxicant-induced selection in communities. Irgarol 1051 is a photosystem (PS) II inhibitor used in antifouling paint. It inhibits photosynthesis through binding to the D1 protein in PS II, which is encoded by the psbA gene found in genomes of chloroplasts, cyanobacteria and cyanophages. psbA mutations that alter the target protein can confer tolerance to PS II inhibitors. We have previously shown that irgarol induces community tolerance in natural marine periphyton communities and suggested a novel tolerance mechanism, involving the amino acid sequence of a turnover-regulating domain of D1, as contributive to this tolerance. Here we use a large number of psbA sequences of known identity to assess the taxonomic affinities of psbA sequences from these differentially tolerant communities, by performing phylogenetic analysis. We show that periphyton communities have high psbA diversity and that this diversity is adversely affected by irgarol. Moreover, we suggest that within tolerant periphyton the novel tolerance mechanism is present among diatoms only, whereas some groups of irgarol-tolerant cyanobacteria seem to have other tolerance mechanisms. However, it proved difficult to identify periphyton psbA haplotypes to the species or genus level, which indicates that the genomic pool of the attached, periphytic life forms is poorly studied and inadequately represented in international sequence databases.
  •  
15.
  •  
16.
  • Flores-Perez, U., et al. (författare)
  • Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope
  • 2016
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 170:1, s. 147-162
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hsp100-type chaperone Hsp93/ClpC has crucial roles in chloroplast biogenesis. In addition to its role in proteolysis in the stroma, biochemical and genetic evidence led to the hypothesis that this chaperone collaborates with the inner envelope TIC complex to power preprotein import. Recently, it was suggested that Hsp93, working together with the Clp proteolytic core, can confer a protein quality control mechanism at the envelope. Thus, the role of envelope-localized Hsp93, and the mechanism by which it participates in protein import, remain unclear. To analyze the function of Hsp93 in protein import independently of its ClpP association, we created a mutant of Hsp93 affecting its ClpP-binding motif (PBM) (Hsp93[P-]), which is essential for the chaperone's interaction with the Clp proteolytic core. The Hsp93[P-] construct was ineffective at complementing the pale-yellow phenotype of hsp93 Arabidopsis (Arabidopsis thaliana) mutants, indicating that the PBM is essential for Hsp93 function. As expected, the PBM mutation negatively affected the degradation activity of the stromal Clp protease. The mutation also disrupted association of Hsp93 with the Clp proteolytic core at the envelope, without affecting the envelope localization of Hsp93 itself or its association with the TIC machinery, which we demonstrate to be mediated by a direct interaction with Tic110. Nonetheless, Hsp93[P-] expression did not detectably improve the protein import efficiency of hsp93 mutant chloroplasts. Thus, our results do not support the proposed function of Hsp93 in protein import propulsion, but are more consistent with the notion of Hsp93 performing a quality control role at the point of import.
  •  
17.
  • Johansson, Oskar N., 1984, et al. (författare)
  • Friends With Benefits: Exploring the Phycosphere of the Marine Diatom Skeletonema marinoi
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine diatoms are the dominant phytoplankton in the temperate oceans and coastal regions, contributing to global photosynthesis, biogeochemical cycling of key nutrients and minerals and aquatic food chains. Integral to the success of marine diatoms is a diverse array of bacterial species that closely interact within the diffusive boundary layer, or phycosphere, surrounding the diatom partner. Recently, we isolated seven distinct bacterial species from cultures of Skeletonema marinoi, a chain-forming, centric diatom that dominates the coastal regions of the temperate oceans. Genomes of all seven bacteria were sequenced revealing many unusual characteristics such as the existence of numerous plasmids of widely varying sizes. Here we have investigated the characteristics of the bacterial interactions with S. marinoi, demonstrating that several strains (Arenibacter algicola strain SMS7, Marinobacter salarius strain SMRS, Sphingorhabdus flavimaris strain SMR4y, Sulfitobacter pseudonitzschiae strain SMR1, Yoonia vestfoldensis strain SMR4r and Roseovarius mucosus strain SMR3) stimulate growth of the diatom partner. Testing of many different environmental factors including low iron concentration, high and low temperatures, and chemical signals showed variable effects on this growth enhancement by each bacterial species, with the most significant being light quality in which green and blue but not red light enhanced the stimulatory effect on S. marinoi growth by all bacteria. Several of the bacteria also inhibited growth of one or more of the other bacterial strains to different extents when mixed together. This study highlights the complex interactions between diatoms and their associated bacteria within the phycosphere, and that further studies are needed to resolve the underlying mechanisms for these relationships and how they might influence the global success of marine diatoms.
  •  
18.
  • Johansson, Oskar N., 1984, et al. (författare)
  • Phenomics reveals a novel putative chloroplast fatty acid transporter in the marine diatom Skeletonema marinoi involved in temperature acclimation
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Diatoms are the dominant phytoplankton in temperate oceans and coastal regions and yet little is known about the genetic basis underpinning their global success. Here, we address this challenge by developing the first phenomic approach for a diatom, screening a collection of randomly mutagenized but identifiably tagged transformants. Based upon their tolerance to temperature extremes, several compromised mutants were identified revealing genes either stress related or encoding hypothetical proteins of unknown function. We reveal one of these hypothetical proteins is a novel putative chloroplast fatty acid transporter whose loss affects several fatty acids including the two omega-3, long-chain polyunsaturated fatty acids - eicosapentaenoic and docosahexaenoic acid, both of which have medical importance as dietary supplements and industrial significance in aquaculture and biofuels. This mutant phenotype not only provides new insights into the fatty acid biosynthetic pathways in diatoms but also highlights the future value of phenomics for revealing specific gene functions in these ecologically important phytoplankton.
  •  
19.
  • Johansson, Oskar N., 1984, et al. (författare)
  • Skeletonema marinoi as a new genetic model for marine chain-forming diatoms
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Diatoms are ubiquitous primary producers in marine ecosystems and freshwater habitats. Due to their complex evolutionary history, much remains unknown about the specific gene functions in diatoms that underlie their broad ecological success. In this study, we have genetically transformed the centric diatom Skeletonema marinoi, a dominant phytoplankton species in temperate coastal regions. Transformation of S. marinoi is the first for a true chain-forming diatom, with the random genomic integration via non homologous recombination of a linear DNA construct expressing the resistance gene to the antibiotic zeocin. A set of molecular tools were developed for reliably identifying the genomic insertion site within each transformant, many of which disrupt recognizable genes and constitute null or knock-down mutations. We now propose S. marinoi as a new genetic model for marine diatoms, representing true chain-forming species that play a central role in global photosynthetic carbon sequestration and the biogeochemical cycling of silicates and various nutrients, as well as having potential biotechnological applications.
  •  
20.
  • Karlsson, Max, et al. (författare)
  • Phenotypic and genotypic adaptations in a riverine green alga (Chlorophyceae, Selenastraceae) as a response to long-term exposure to chemical stress
  • 2019
  • Ingår i: SETAC Helsinki - SETAC Europe 29th Annual Meeting, 26 - 30 May 2019, Helsinki, Finland.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Herbicide pollution is a common problem in agricultural streams due to their extensive use and their unwanted effects on non-target species inhabiting these systems. Selanastraceae is a family of green algae that are particularly dominant in freshwater, making them a key component in the base of the food chain and an important part of the oxygen production. Therefore, it is crucial from a conservation point of view to accurately monitor the ecotoxicological impact of herbicides on this group of algae, not only on a short-term scale (e.g. days or weeks), but also in a long-term perspective (e.g. months and years). In this work, phenotypic and genotypic differences are studied between different strains of a population of Kirchneriella (Chlorophyceae, Selenastraceae) isolated from a stream polluted by herbicides over a 20-year period (Skivarpsån, SE Sweden). According to mixture toxicity modelling performed on data obtained from the Swedish pesticide monitoring program, the main drivers of algal toxicity in this river are the herbicides diflufenican (carotenoid synthesis inhibitor) and isoproturon (PSII inhibitor). Three strains of the isolated algae are examined in this study: two strains from the field that have been exposed to different levels of herbicides and one laboratory strain that has never been exposed to herbicide pollution. The taxonomy of this algae is investigated by light microscopy and DNA barcoding analyses (chloroplast 23S rRNA gene). Phenotypic differences between the strains are examined as impacts on growth rate, cell size, photosynthetic activity (chl fluorescence measurements), pigment content and sensitivity to the specific herbicides mentioned earlier (EC50s). Genotypic differences are studied as single nucleotide polymorphisms thought to be induced through exposure to diflufenican and isoproturon on pds and psbA genes via PCR amplification, cloning and sequencing. The results obtained from this project will contribute to a better understanding of genetic and phenotypic adaptations in green algae as a response to herbicide pollution (evolutionary toxicology) and their implications for ecological functions.
  •  
21.
  • Koussevitzky, S., et al. (författare)
  • An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development
  • 2007
  • Ingår i: Plant Molecular Biology. - : Springer Science and Business Media LLC. - 0167-4412 .- 1573-5028. ; 63:1, s. 85-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATP-dependent Clp protease has been well-characterized in Escherichia coli, but knowledge of its function in higher plants is limited. In bacteria, this two-component protease consists of a Ser-type endopeptidase ClpP, which relies on the ATP-dependent unfolding activity from an Hsp100 molecular chaperone to initiate protein degradation. In the chloroplasts of higher plants, multiple isoforms of the proteolytic subunit exist, with Arabidopsis having five ClpPs and four ClpP-like proteins termed ClpR predicted in its genome. In this work we characterized an Arabidopsis mutant impaired in one subunit of the chloroplast-localized Clp protease core, ClpR1. clpR1-1, a virescent mutant, carries a pre-mature stop codon in the clpR1 gene, resulting in no detectable ClpR1 protein. The accumulation of several chloroplast proteins, as well as most of the chloroplast-localized Clp protease subunits, is inhibited in clpR1-1. Unexpectedly, some plastid-encoded proteins do not accumulate, although their transcripts accumulate to wild-type levels. Maturation of 23S and 4.5S chloroplast ribosomal RNA (cp-rRNA) is delayed in clpR1-1, and both RNAs accumulate as higher molecular weight precursors. Also, chloroplasts in clpR1-1 are smaller than in wild type and have fewer thylakoid membranes with smaller grana stacks. We propose that a ClpR1-containing activity is required for chloroplast development and differentiation and in its absence both are delayed.
  •  
22.
  • Li, Feng, et al. (författare)
  • The B-Box Family Gene STO (BBX24) in Arabidopsis thaliana Regulates Flowering Time in Different Pathways
  • 2014
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Flowering at the appropriate time is crucial for reproductive success and is strongly influenced by various pathways such as photoperiod, circadian clock, FRIGIDA and vernalization. Although each separate pathway has been extensively studied, much less is known about the interactions between them. In this study we have investigated the relationship between the photoperiod/circadian clock gene and FRIGIDA/FLC by characterizing the function of the B-box STO gene family. STO has two B-box Zn-finger domains but lacks the CCT domain. Its expression is controlled by circadian rhythm and is affected by environmental factors and phytohormones. Loss and gain of function mutants show diversiform phenotypes from seed germination to flowering. The sto-1 mutant flowers later than the wild type (WT) under short day growth conditions, while over-expression of STO causes early flowering both in long and short days. STO over-expression not only reduces FLC expression level but it also activates FT and SOC1 expression. It also does not rely on the other B-box gene CO or change the circadian clock system to activate FT and SOC1. Furthermore, the STO activation of FT and SOC1 expression is independent of the repression of FLC; rather STO and FLC compete with each other to regulate downstream genes. Our results indicate that photoperiod and the circadian clock pathway gene STO can affect the key flowering time genes FLC and FT/SOC1 separately, and reveals a novel perspective to the mechanism of flowering regulation.
  •  
23.
  • Mikhailov, V. A., et al. (författare)
  • Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus
  • 2015
  • Ingår i: Journal of Structural Biology. - : Elsevier BV. - 1047-8477. ; 192:3, s. 519-527
  • Tidskriftsartikel (refereegranskat)abstract
    • The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. To investigate the proteolytic core of the ClpXP1/P2 protease from the cyanobacterium Synechococcus elongatus we have used a non-denaturing mass spectrometry approach. We show that the proteolytic core is a double ring tetradecamer consisting of an equal number of ClpP1 and ClpP2 subunits with masses of 21.70 and 23.44 kDa, respectively. Two stoichiometries are revealed for the heptameric rings: 4ClpP1 + 3ClpP2 and 3ClpP1 + 4ClpP2. When combined in the double ring the stoichiometries are (4ClpP1 + 3ClpP2) + (3ClpP1 + 4ClpP2) and 2 x (3ClpP1 + 4ClpP2) with a low population of a 2 x (4ClpP1 + 3ClpP2) tetradecamer. The assignment of the stoichiometries is confirmed by collision-induced dissociation of selected charge states of the intact heptamer and tetradecamer. Presence of the heterodimers, heterotetramers and heterohexamers, and absence of the mono-oligomers, in the mass spectra of the partially denatured protease indicates that the ring complex consists of a chain of ClpP1/ClpP2 heterodimers with the ring completed by an additional ClpP1 or ClpP2 subunit. (C) 2015 The Authors. Published by Elsevier Inc.
  •  
24.
  • Pinder, Matthew I. M., 1990, et al. (författare)
  • Genome Sequence of Kordia sp. Strain SMS9 Identified in a Non-Axenic Culture of the Diatom Skeletonema marinoi.
  • 2019
  • Ingår i: Journal of genomics. - : Ivyspring International Publisher. - 1839-9940. ; 7, s. 46-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Initial efforts to sequence the genome of the marine diatom Skeletonema marinoi were hampered by the presence of genetic material from bacteria, and there was sufficient material from some of these bacteria to enable the assembly of full chromosomes. Here, we report the genome of strain SMS9, one such bacterial species identified in a non-axenic culture of S. marinoi strain ST54. Its 5,482,391 bp circular chromosome contains 4,641 CDSs, and has a G+C content of 35.6%. Based on 16S rRNA comparison, phylotaxonomic analysis, and the genome similarity metrics dDDH and OrthoANI, we place this strain in the genus Kordia, and to the best of our knowledge, this is the first Kordia species to be initially described from European waters. As attempts to culture this strain have failed, however, the specifics of its relationship with S. marinoi are still uncertain.
  •  
25.
  • Shen, G. X., et al. (författare)
  • The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function
  • 2007
  • Ingår i: Plant Journal. - 0960-7412. ; 49:2, s. 228-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal CHIP proteins are chaperone-dependent E3 ubiquitin ligases that physically interact with Hsp70, Hsp90 and proteasome, promoting degradation of a selective group of non-native or damaged proteins in animal cells. The plant CHIP-like protein, AtCHIP, also plays important roles in protein turnover metabolism. AtCHIP interacts with a proteolytic subunit, ClpP4, of the chloroplast Clp protease in vivo, and ubiquitylates ClpP4 in vitro. The steady-state level of ClpP4 is reduced in AtCHIP-overexpressing plants under high-intensity light conditions, suggesting that AtCHIP targets ClpP4 for degradation and thereby regulates the Clp proteolytic activity in chloroplasts under certain stress conditions. Overexpression of ClpP4 in Arabidopsis leads to chlorotic phenotypes in transgenic plants, and chloroplast structures in the chlorotic tissues of ClpP4-overexpressing plants are abnormal and largely devoid of thylakoid membranes, suggesting that ClpP4 plays a critical role in chloroplast structure and function. As AtCHIP is a cytosolic protein that has been shown to play an important role in regulating an essential chloroplast protease, this research provides new insights into the regulatory networks controlling protein turnover catabolism in chloroplasts.
  •  
26.
  • Sjögren, Lars, 1977, et al. (författare)
  • Assembly of the Chloroplast ATP-Dependent Clp Protease in Arabidopsis Is Regulated by the ClpT Accessory Proteins
  • 2011
  • Ingår i: Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 23:1, s. 322-332
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.
  •  
27.
  • Sjögren, Lars, 1977, et al. (författare)
  • Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content
  • 2004
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 136:4, s. 4114-4126
  • Tidskriftsartikel (refereegranskat)abstract
    • ClpC is a molecular chaperone of the Hsp100 family. In higher plants there are two chloroplast-localized paralogs (ClpC1 and ClpC2) that are approximately 93% similar in primary sequence. In this study, we have characterized two independent Arabidopsis (Arabidopsis thaliana) clpC1 T-DNA insertion mutants lacking on average 65% of total ClpC content. Both mutants display a retarded-growth phenotype, leaves with a homogenous chlorotic appearance throughout all developmental stages, and more perpendicular secondary influorescences. Photosynthetic performance was also impaired in both knockout lines, with relatively fewer photosystem I and photosystem II complexes, but no changes in ATPase and Rubisco content. However, despite the specific drop in photosystem I and photosystem II content, no changes in leaf cell anatomy or chloroplast ultrastructure were observed in the mutants compared to the wild type. Previously proposed functions for envelope-associated ClpC in chloroplast protein import and degradation of mistargeted precursors were examined and shown not to be significantly impaired in the clpC1 mutants. In the stroma, where the majority of ClpC protein is localized, marked increases of all ClpP paralogs were observed in the clpC1 mutants but less variation for the ClpR paralogs and a corresponding decrease in the other chloroplast-localized Hsp100 protein, ClpD. Increased amounts of other stromal molecular chaperones (Cpn60, Hsp70, and Hsp90) and several RNA-binding proteins were also observed. Our data suggest that overall ClpC as a stromal molecular chaperone plays a vital role in chloroplast function and leaf development and is likely involved in photosystem biogenesis.
  •  
28.
  •  
29.
  • Sjögren, Lars, 1977, et al. (författare)
  • Quantitative Analysis of the Chloroplast Molecular Chaperone ClpC/Hsp93 in Arabidopsis Reveals New Insights into Its Localization, Interaction with the Clp Proteolytic Core, and Functional Importance
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289:16, s. 11318-11330
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular chaperone ClpC/Hsp93 is essential for chloroplast function in vascular plants. ClpC has long been held to act both independently and as the regulatory partner for the ATP-dependent Clp protease, and yet this and many other important characteristics remain unclear. In this study, we reveal that of the two near-identical ClpC paralogs (ClpC1 and ClpC2) in Arabidopsis chloroplasts, along with the closely related ClpD, it is ClpC1 that is the most abundant throughout leaf maturation. An unexpectedly large proportion of both chloroplast ClpC proteins (30% of total ClpC content) associates to envelope membranes in addition to their stromal localization. The Clp proteolytic core is also bound to envelope membranes, the amount of which is sufficient to bind to all the similarly localized ClpC. The role of such an envelope membrane Clp protease remains unclear although it appears uninvolved in preprotein processing or Tic subunit protein turnover. Within the stroma, the amount of oligomeric ClpC protein is less than that of the Clp proteolytic core, suggesting most if not all stromal ClpC functions as part of the Clp protease; a proposal supported by the near abolition of Clp degradation activity in the clpC1 knock-out mutant. Overall, ClpC appears to function primarily within the Clp protease, as the principle stromal protease responsible for maintaining homeostasis, and also on the envelope membrane where it possibly confers a novel protein quality control mechanism for chloroplast preprotein import.
  •  
30.
  • Sjögren, Lars, 1977, et al. (författare)
  • Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis
  • 2006
  • Ingår i: Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 18:10, s. 2635-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast with the model Escherichia coli Clp protease, the ATP- dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus- encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1- 4 proteins, the other containing ClpP3- 6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.
  •  
31.
  •  
32.
  • Stanne, Tara M, 1979, et al. (författare)
  • Distinctive types of ATP-dependent Clp proteases in cyanobacteria
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 282:19, s. 14394-14402
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.
  •  
33.
  • Stanne, Tara M, 1979, et al. (författare)
  • Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis.
  • 2009
  • Ingår i: The Biochemical journal. - 1470-8728. ; 417:1, s. 257-68
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATP-dependent Clp protease in plant chloroplasts consists of a heterogeneous proteolytic core containing multiple ClpP and ClpR paralogues. In this study, we have examined in detail the only viable knockout mutant to date of one of these subunits in Arabidopsis thaliana, ClpR1. Loss of ClpR1 caused a slow-growth phenotype, with chlorotic leaves during early development that later partially recovered upon maturity. Analysis of the Clp proteolytic core in the clpR1 mutant (clpR1-1) revealed approx. 10% of the wild-type levels remaining, probably due to a relative increase in the closely related ClpR3 protein and its partial substitution of ClpR1 in the core complex. A proteomic approach using an in organello proteolytic assay revealed 19 new potential substrates for the chloroplast Clp protease. Many of these substrates were constitutive enzymes involved in different metabolic pathways, including photosynthetic carbon fixation, nitrogen metabolism and chlorophyll/haem biosynthesis, whereas others function in housekeeping roles such as RNA maturation, protein synthesis and maturation, and recycling processes. In contrast, degradation of the stress-related chloroplast proteins Hsp21 (heat-shock protein 21) and lipoxygenase 2 was unaffected in the clpR1-1 line and thus not facilitated by the Clp protease. Overall, we show that the chloroplast Clp protease is principally a constitutive enzyme that degrades numerous stromal proteins, a feature that almost certainly underlies its vital importance for chloroplast function and plant viability.
  •  
34.
  • Tryggvesson, Anders, 1975, et al. (författare)
  • Characterization of ClpS2, an essential adaptor protein for the cyanobacterium Synechococcus elongatus
  • 2015
  • Ingår i: Febs Letters. - : Wiley. - 0014-5793. ; 589:24, s. 4039-4046
  • Tidskriftsartikel (refereegranskat)abstract
    • The adaptor protein ClpS associates to the Clp protease and promotes degradation of N-end rule substrates in eubacteria and in algal/plant chloroplasts. Cyanobacteria are unusual in having two distinct ClpS paralogs. Although ClpS1 is typical of bacterial ClpS, ClpS2 differs in crucial ways. ClpS2 in Synechococcus elongatus is a relatively low- abundant, soluble protein essential for phototrophic growth. Like ClpS1, ClpS2 binds to the ClpCP3/R protease to block alpha-casein degradation and promote that of N-end rule substrates in vitro. However, their substrate specificity differs, with ClpS1 recognizing destabilizing Phe and Tyr residues at the substrate N-terminus whereas ClpS2 recognizes Leu. Overall, ClpS2 appears to have independently evolved in cyanobacteria to degrade a particular group of proteins, whose turnover is vital for cell viability. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
  •  
35.
  •  
36.
  • Töpel, Mats H., 1973, et al. (författare)
  • Complete Genome Sequence of Novel Sulfitobacter pseudonitzschiae Strain SMR1, Isolated from a Culture of the Marine Diatom Skeletonema marinoi.
  • 2019
  • Ingår i: Journal of Genomics. - : Ivyspring International Publisher. - 1839-9940. ; 7, s. 7-10
  • Tidskriftsartikel (refereegranskat)abstract
    • When studying diatoms, an important consideration is the role of associated bacteria in the diatom-microbiome holobiont. To that end, bacteria isolated from a culture of Skeletonema marinoi strain R05AC were sequenced, one of which being bacterial strain SMR1, presented here. The genome consists of a circular chromosome and seven circular plasmids, totalling 5,121,602 bp. After phylotaxonomic analysis and 16S rRNA sequence comparison, we place this strain in the taxon Sulfitobacter pseudonitzschiae on account of similarity to the type strain. The annotated genome suggests similar interactions between strain SMR1 and its host diatom as have been shown previously in diatom-associated Sulfitobacter, for example bacterial production of growth hormone for its host, and breakdown of diatom-derived DMSP by Sulfitobacter for use as a sulfur source.
  •  
37.
  • Töpel, Mats H., 1973, et al. (författare)
  • Complete Genome Sequence of the Diatom-Associated Bacterium Sphingorhabdus sp. Strain SMR4y
  • 2019
  • Ingår i: Microbiology Resource Announcements. - : American Society for Microbiology. - 2576-098X. ; 8:29
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial strain SMR4y belongs to the diverse microbiome of the marine diatom Skeletonema marinoi strain R05AC. After assembly of its genome, presented here, and subsequent analyses, we placed it in the genus Sphingorhabdus. This strain has a 3,479,724-bp circular chromosome (with 3,340 coding sequences) and no known plasmids.
  •  
38.
  • Töpel, Mats H., 1973, et al. (författare)
  • Genome sequence of arenibacter algicola strain SMS7, found in association with the marine diatom skeletonema marinoi
  • 2019
  • Ingår i: Microbiology Resource Announcements. - 2576-098X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Copyright © 2019 Töpel et al. Arenibacter algicola strain SMS7 was isolated from a culture of the marine diatom Skeletonema marinoi strain ST54, sampled from top-layer sediments in Kosterfjord, Sweden. Here, we present its 5,857,781-bp genome, consisting of a circular chromosome and one circular plasmid, in all containing 4,932 coding sequences.
  •  
39.
  • Töpel, Mats H., 1973, et al. (författare)
  • Genome sequence of Roseovarius mucosus strain SMR3, isolated from a culture of the diatom Skeletonema marinoi
  • 2017
  • Ingår i: Genome Announcements. - 2169-8287. ; 5:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the genome of Roseovarius mucosus strain SMR3, a marine bacterium isolated from the diatom Skeletonema marinoi strain RO5AC sampled from top layer sediments at 14 m depth. Its 4,381,426 bp genome consists of a circular chromosome and two circular plasmids and contains 4,178 coding sequences (CDSs). © 2017 Töpel et al.
  •  
40.
  • Töpel, Mats H., 1973, et al. (författare)
  • Whole Genome Sequence of Marinobacter salarius Strain SMR5, Shown to Promote Growth in its Diatom Host.
  • 2019
  • Ingår i: Journal of Genomics. - : Ivyspring International Publisher. - 1839-9940. ; 7, s. 60-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Attempts to obtain axenic cultures of the marine diatom Skeletonema marinoi often result in poor growth, indicating the importance of the microbiome to the growth of its host. In order to identify the precise roles played by these associated bacteria, individual strains were isolated, cultured and sequenced. We report the genome of one such strain - SMR5, isolated from a culture of S. marinoi strain R05AC sampled from top layer sediments of the Swedish west coast. Its genome of 4,630,160 bp consists of a circular chromosome and one circular plasmid, and 4,263 CDSs were inferred in the annotation. Comparison of 16S rRNA sequences and other markers, along with phylotaxonomic analysis, leads us to place strain SMR5 in the taxon Marinobacter salarius. Pathway analysis and previous experimental work suggest that this strain may produce a growth factor, as well as improve iron availability for its host via siderophores.
  •  
41.
  • Töpel, Mats H., 1973, et al. (författare)
  • Whole-Genome Sequence of the Novel Antarctobacter heliothermus Strain SMS3, Found in Association with the Marine Diatom Skeletonema marinoi.
  • 2018
  • Ingår i: Journal of Genomics. - : Ivyspring International Publisher. - 1839-9940. ; 6, s. 113-116
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of an ongoing investigation into the microbiome of the marine diatom Skeletonema marinoi, the bacterial strain SMS3 was isolated from a culture of S. marinoi strain ST54, which had been propagated from a sample of top layer marine sediments taken from the Swedish west coast. We present here the sequenced genome of this bacterium, which we place in the taxon Antarctobacter heliothermus, based on a phylotaxonomic analysis and its high 16S rRNA sequence similarity to the A. heliothermus type strain DSM 11445T. Its 5,331,190 bp genome consists of a circular chromosome and three circular plasmids, and contains 5,019 CDSs. Strain SMS3 contains a phosphatidylcholine synthase gene, as well as genes involved in DMSP degradation, both of which imply a potential symbiotic relationship with its host.
  •  
42.
  • Wagner, Raik, et al. (författare)
  • Deletion of FtsH11 protease has impact on chloroplast structure and function in Arabidopsis thaliana when grown under continuous light
  • 2016
  • Ingår i: Plant Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 39:11, s. 2530-2544
  • Tidskriftsartikel (refereegranskat)abstract
    • The membrane-integrated metalloprotease FtsH11 of Arabidopsis thaliana is proposed to be dual-targeted to mitochondria and chloroplasts. A bleached phenotype was observed in ftsh11 grown at long days or continuous light, pointing to disturbances in the chloroplast. Within the chloroplast, FtsH11 was found to be located exclusively in the envelope. Two chloroplast-located proteins of unknown function (Tic22-like protein and YGGT-A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsh11 and therefore qualify as potential substrates for the FtsH11 protease. No proteomic changes were observed in the mitochondria of 6-week-old ftsh11 compared with wild type, and FtsH11 was not immunodetected in these organelles. The abundance of plastidic proteins, especially of photosynthetic proteins, was altered even during standard growth conditions in total leaves of ftsh11. At continuous light, the amount of photosystem I decreased relative to photosystem II, accompanied by a drastic change of the chloroplast morphology and a drop of non-photochemical quenching. FtsH11 is crucial for chloroplast structure and function during growth in prolonged photoperiod. The membrane-integrated metalloprotease FtsH11 of Arabidopsis thaliana was found to be located exclusively in the chloroplast envelope and to be crucial for chloroplast structure and function during growth in prolonged photoperiod. Two chloroplast-located proteins of unknown function (Tic22-like protein and YGGT-A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsH11 and therefore qualify as potential substrates for the FtsH11 protease.
  •  
43.
  • Zheng, Bo, et al. (författare)
  • A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana
  • 2006
  • Ingår i: Planta. - : Springer Science and Business Media LLC. - 0032-0935 .- 1432-2048. ; 224:5, s. 1103-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • ClpP4 is a nuclear-encoded plastid protein that functions as a proteolytic subunit of the ATP-dependent Clp protease of higher plants. Given the lack of viable clpP4 knockout mutants, antisense clpP4 repression lines were prepared to study the functional importance of ClpP4 in Arabidopsis thaliana. Screening of transformants revealed viable lines with up to 90% loss of wild type levels of ClpP4 protein, while those with > 90% were severely bleached and strongly retarded in vegetative growth, failing to reach reproductive maturity. Of the viable antisense plants, repression of clpP4 expression produced a pleiotropic phenotype, of which slow growth and leaf variegation were most prominent. Chlorosis was most severe in younger leaves, with the affected regions localized around the mid-vein and exhibiting impaired chloroplast development and mesophyll cell differentiation. Chlorosis lessened during leaf expansion until all had regained the wild type appearance upon maturity. This change in phenotype correlated with the developmental expression of ClpP4 in the wild type, in which ClpP4 was less abundant in mature leaves due to post-transcriptional/translational regulation. Repression of ClpP4 caused a concomitant down-regulation of other nuclear-encoded ClpP paralogs in the antisense lines, but no change in other chloroplast-localized Clp proteins. Greening of the young chlorotic antisense plants upon maturation was accelerated by increased light, either by longer photoperiod or by higher growth irradiance; conditions that both raised levels of ClpP4 in wild type leaves. In contrast, shift to low growth irradiance decreased the relative amount of ClpP4 in wild type leaves, and caused newly developed leaves of fully greened antisense lines to regain the chlorotic phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43
Typ av publikation
tidskriftsartikel (35)
konferensbidrag (6)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Clarke, Adrian K, 19 ... (42)
Töpel, Mats H., 1973 (12)
Godhe, Anna, 1967 (10)
Nilsson, R. Henrik, ... (3)
Zheng, Bo (3)
Corcoll, Natàlia, 19 ... (2)
visa fler...
Zhang, H. (1)
Antonelli, Alexandre ... (1)
Kristiansson, Erik, ... (1)
Gómez-Martínez, Dani ... (1)
Wang, Jin (1)
Aronsson, Henrik, 19 ... (1)
Wang, Mei (1)
Karlsson, Max (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Blomberg, Anders, 19 ... (1)
Robinson, Carol V (1)
Adam, Z. (1)
Maurizi, M. R. (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
Andersson, Mats X., ... (1)
De Milito, Angelo (1)
Ohlsson, Fredrik (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Chen, Xi (1)
Clarke, Robert (1)
Kumar, Ashok (1)
Funk, Christiane (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Franzen, L. E. (1)
Melino, Gerry (1)
Wang, D. H. (1)
Mysorekar, Indira (1)
Albert, Matthew L (1)
Zhu, Changlian, 1964 (1)
Lopez-Otin, Carlos (1)
Khan, Nadir Zaman, 1 ... (1)
Liu, Bo (1)
Ghavami, Saeid (1)
Schelin, Jenny (1)
Harris, James (1)
Sharon, Michal (1)
visa färre...
Lärosäte
Göteborgs universitet (43)
Chalmers tekniska högskola (5)
Umeå universitet (4)
Lunds universitet (2)
Högskolan i Halmstad (1)
Linköpings universitet (1)
visa fler...
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (43)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (43)
Medicin och hälsovetenskap (5)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy