SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clauer C R) "

Sökning: WFRF:(Clauer C R)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engebretson, Mark J., et al. (författare)
  • Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic field Bz that exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.
  •  
2.
  • Cumnock, Judy, et al. (författare)
  • POLAR UVI Observations of Auroral Oval Intensifications During a Transpolar Arc Event on December 7, 1996
  • 2000
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The evolution of the northern hemisphere aurora is examined during a time when the IMF makes three brief southward excursions after a change in the sign of By during an extended period of northward IMF. POLAR UVI provides images of the aurora while DMSP F13 and F14 provide in situ measurements of precipitating particles, ionospheric plasma flows and ion density. Three different intensifications located in the nightside auroral oval occur during northward turnings of the IMF after brief periods of southward IMF. Spatial expansion, intensity of emissions and their duration are related to the length of time the IMF is southward prior to the northward turning. Thus the longer the period of enhanced magnetospheric convection the more intense the ionospheric response. Observations of a transpolar arc indicate that when the transpolar arc reaches highest latitudes it is located on a spatially narrow region of closed field lines, which extends along the noon-midnight meridian. UV observations indicate a connection between the transpolar arc and the nightside auroral enhancements. Precipitating particles associated with both features are attributed to a plasma sheet boundary layer source in the magnetotail implying a magnetospheric connection between the transpolar arc and the nightside auroral oval intensification.
  •  
3.
  •  
4.
  • Sitar, R J, et al. (författare)
  • Multi-instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996
  • 1998
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS. ; 103, s. 23357-23372
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the analysis of a coordinated set of observations from the POLAR ultraviolet imager (UVI), ground magnetometers, incoherent scatter radar, solar wind monitors, and the DMSP satellite, focused on a traveling convection vortex (TCV) event on July 24, 1996. Starting at approximately 1036 UT, ground magnetometers in Greenland and eastern Canada observe pulsations consistent with the passing overhead of a series of TCV field-aligned current pairs. Azimuthal scans by the Sondrestrom incoherent scatter radar located near Kangerlussuaq (formerly Sondrestrom), Greenland, at this time show strong modulation in the strength and direction of ionospheric plasma flow. The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 1137 UT. Images from the UVI instrument show a localized intensification of auroral emissions over central and western Greenland at 1139 UT. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 1158 UT, at which time the intensification fades, These observations are consistent with the westward passage of four pairs of TCVs over central Greenland. The intensification of auroral emissions at 1139 UT is associated with the leading vortex of the fourth TCV pair, thought to be the result of an upward field-aligned current. The modulated flow observed by the radar is the result of the strong electric fields associated with the field-aligned current systems responsible for the impulsive TCV as they pass through the field of view of the radar. Measurements taken in the solar wind by the Wind spacecraft suggest that a pressure change triggers the onset of TCV activity. A subsequent sudden change in the orientation of the interplanetary magnetic field produces a hot flow anomaly which forms at the bow shock. We believe that the interaction of the hot flow anomaly with the magnetopause intensified the fourth TCV pair and. produced the associated auroral brightening. DMSP particle data indicate that the TCVs occur on field lines which map to the boundary plasma sheet-low latitude boundary layer interface. The ground observations associated with the hot flow anomaly are the first of their kind and provide a mechanism to tie an interplanetary magnetic field orientation change into the existing theory that TCVs result from a deformation of the magnetopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy