SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clavero Ada Lerma) "

Sökning: WFRF:(Clavero Ada Lerma)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Degerstedt, Oliver, et al. (författare)
  • Quantitative imaging of doxorubicin diffusion and cellular uptake in biomimetic gels with human liver tumor cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Novel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in-depth understanding of drug diffusion, penetration across the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging. Diffusion of doxorubicin was reduced in a biomimetic hydrogel mimicking tissue properties of cirrhotic liver and early stage hepatocellular carcinoma (362 ± 109 µm2/s) as compared to an agarose gel (571 ± 145 µm2/s, p = 0.0085). The diffusion was further lowered to 164 ± 33 µm2/s (p = 0.0023) by preparing the biomimetic gel in cell media instead of phosphate buffered saline. The addition of liver tumor cells (Huh7 or HepG2) to the gel, at two different densities, did not significantly influence drug diffusion. Clinically relevant and quantifiable doxorubicin concentration gradients (1-20 µM) were established in the chip within one hour. Intracellular increases in doxorubicin fluorescence correlated with decreasing fluorescence of the DNA-binding stain Hoechst 33342, and based on the quantified intracellular uptake of doxorubicin an apparent cell permeability (9.00 ± 0.74 x 10-4 µm/s for HepG2) was determined.
  •  
2.
  •  
3.
  • Kopsida, Maria, et al. (författare)
  • Inhibiting the endoplasmic reticulum stress response enhances the effect of doxorubicin by altering the lipid metabolism of liver cancer cells
  • 2024
  • Ingår i: Molecular Metabolism. - : Elsevier. - 2212-8778. ; 79
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is characterized by a low and variable response to chemotherapeutic treatments. One contributing factor to the overall pharmacodynamics is the activation of endoplasmic reticulum (ER) stress pathways. This is a cellular stress mechanism that becomes activated when the cell's need for protein synthesis surpasses the ER's capacity to maintain accurate protein folding, and has been implicated in creating drug-resistance in several solid tumors. Objective: To identify the role of ER-stress and lipid metabolism in mediating drug response in HCC. Methods: By using a chemically-induced mouse model for HCC, we administered the ER-stress inhibitor 4m8C and/or doxorubicin (DOX) twice weekly for three weeks post-tumor initiation. Histological analyses were performed alongside comprehensive molecular biology and lipidomics assessments of isolated liver samples. In vitro models, including HCC cells, spheroids, and patient-derived liver organoids were subjected to 4m8C and/or DOX, enabling us to assess their synergistic effects on cellular viability, lipid metabolism, and oxygen consumption rate. Results: We reveal a pivotal synergy between ER-stress modulation and drug response in HCC. The inhibition of ER-stress using 4m8C not only enhances the cytotoxic effect of DOX, but also significantly reduces cellular lipid metabolism. This intricate interplay culminates in the deprivation of energy reserves essential for the sustenance of tumor cells. Conclusions: This study elucidates the interplay between lipid metabolism and ER-stress modulation in enhancing doxorubicin efficacy in HCC. This novel approach not only deepens our understanding of the disease, but also uncovers a promising avenue for therapeutic innovation. The long-term impact of our study could open the possibility of ER-stress inhibitors and/or lipase inhibitors as adjuvant treatments for HCC-patients. (c) 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
4.
  • Peters, Karsten, et al. (författare)
  • Melatonin mitigates chemotherapy-induced small intestinal atrophy in rats and reduces cytotoxicity in murine intestinal organoids
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Cancer continues to pose a significant global health challenge, claiming numerous lives prematurely and necessitating the use of potent cytotoxic chemotherapeutics such as 5-fluorouracil (5-FU). Chemotherapeutics are efficiently killing cancer cells but the treat-ments frequently cause off-target effects such as chemotherapy-induced mucositis (CIM), characterized by debilitating symptoms like diarrhoea, that require a medical intervention. In this study, we elucidated the efficacy of melatonin and misoprostol in 5-FU-induced small intestinal mucositis. Morphological and cellular changes in the je-junum, along with colonic faecal water content were quantified in rats as markers for CIM. Additionally, the effects of melatonin were investigated in vitro on 5-FU treated murine intestinal organoids. The results showed that melatonin prevented villus atrophy in the rat jejunal mucosa and upheld cell viability in murine intestinal organoids. In contrast, misoprostol alone or in combination with melatonin did not significantly affect CIM caused by 5-FU. These in vivo and in vitro experiments provide promising insights that melatonin may be used as a preventive and/or adjuvant combination therapy to reduce CIM, holding the potential to enhance cancer treatment outcomes and improve patient quality-of-life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy