SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Collet Remo) "

Sökning: WFRF:(Collet Remo)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asplund, Martin, et al. (författare)
  • Radiative Transfer in 3D Model Stellar Atmospheres
  • 2003
  • Ingår i: ASP Conference Proceedings. - 1583811400 ; , s. 197-
  • Konferensbidrag (populärvet., debatt m.m.)abstract
    • Recently 3D hydrodynamical simulations of stellar surface convection have become feasible thanks to advances in computer technology and efficient numerical algorithms. Available observational diagnostics indicate that these models are highly realistic in describing the topology of stellar granulation and for spectral line formation purposes. The traditional free parameters (mixing length parameters, micro- and macroturbulence) always inherent in standard 1D analyses have thus finally become obsolete. These 3D models can therefore both shed light on the elusive nature of stellar convection as well as be employed in element abundance analyses. In the present contribution we will describe some aspects of the models and possible applications of them in terms of radiative transfer.
  •  
2.
  • Bergemann, Maria, et al. (författare)
  • Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and 3D Models. II. Chemical Properties of the Galactic Metal-poor Disk and the Halo
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 847:1
  • Tidskriftsartikel (refereegranskat)abstract
    • From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged models. We show that compared to the NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]-[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ∼ -1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.
  •  
3.
  • Bergemann, Maria, et al. (författare)
  • Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and 〈3〉 Models. I. Methods and Application to Magnesium Abundances in Standard Stars
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 847:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine Mg abundances in six Gaia benchmark stars using theoretical one-dimensional (1D) hydrostatic model atmospheres, as well as temporally and spatially averaged three-dimensional (〈3D〉) model atmospheres. The stars cover a range of Teff from 4700 to 6500 K, log g from 1.6 to 4.4 dex, and [Fe H] from -3.0 dex to solar. Spectrum synthesis calculations are performed in local thermodynamic equilibrium (LTE) and in non-LTE (NLTE) using the oscillator strengths recently published by Pehlivan Rhodin et al. We find that: (a) Mg abundances determined from the infrared spectra are as accurate as the optical diagnostics, (b) the NLTE effects on Mg I line strengths and abundances in this sample of stars are minor (although for a few Mg I lines the NLTE effects on abundance exceed 0.6 dex in 〈3D〉 and 0.1 dex in 1D, (c) the solar Mg abundance is 7.56 ± 0.05 dex (total error), in excellent agreement with the Mg abundance measured in CI chondritic meteorites, (d) the 1D NLTE and 〈3D〉 NLTE approaches can be used with confidence to analyze optical Mg I lines in spectra of dwarfs and sub-giants, but for red giants the Mg I 5711 line should be preferred, (e) low-excitation Mg I lines are sensitive to the atmospheric structure; for these lines, LTE calculations with 〈3D〉 models lead to significant systematic abundance errors. The methods developed in this work will be used to study Mg abundances of a large sample of stars in the next paper in the series.
  •  
4.
  • Bessell, Michael S., et al. (författare)
  • Nucleosynthesis in a Primordial Supernova : Carbon and Oxygen Abundances in SMSS J031300.36-670839.3
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 806:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SMSS J031300.36-670839.3 (hereafter SM0313-6708) is a sub-giant halo star, with no detectable Fe lines and large overabundances of C and Mg relative to Ca. We obtained Very Large Telescope-Ultraviolet and Visual Echelle Spectrograph (UVES) spectra extending to 3060 angstrom showing strong OH A-X band lines enabling an oxygen abundance to be derived. The OH A-X band lines in SM0313-6708 are much stronger than the CH C-X band lines. Spectrum synthesis fits indicate an [O/C] ratio of 0.02 +/- 0.175. Our high signal-to-noise ratio UVES data also enabled us to lower the Fe abundance limit to [Fe/H](< 3D >,NLTE) < -7.52 (3 sigma). These data support our previous suggestion that the star formed from the iron-poor ejecta of a single massive star Population III supernova.
  •  
5.
  • Collet, Remo, et al. (författare)
  • 3D Hydrodynamical model stellar atmospheres of metal-poor red giants
  • 2005
  • Ingår i: Proceedings of the International Astronomical Union, vol. 1. - 9780521851992 - 0 521 85199 8 ; , s. 247-248
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We investigate the main differences between static 1D and 3D time-dependent model stellar atmospheres of red giants at very low metallicities. We focus in particular on the impact of 3D LTE spectral line formation on the derivation of elemental abundances for the extremely metal-poor ([Fe/H] ≈-5.3) red giant HE 0107-5240.
  •  
6.
  •  
7.
  • Collet, Remo, et al. (författare)
  • Effects of line-blocking on the non-LTE Fe I spectral line formation
  • 2005
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 442, s. 643-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of background line opacity (line-blocking) in statistical equilibrium calculations for Fe in late-type stellar atmospheres have been investigated using an extensive and up-to-date model atom with radiative data primarily from the iron Project. The background metal line opacities have been computed using data from the marcs stellar model atmospheres. While accounting for this line opacity is important at solar metallicity, the differences between calculations including and excluding line-blocking at low metallicity are insignificant for the non-local thermodynamic equilibrium (non-LTE) abundance corrections for Fe I lines. The line-blocking has no impact on the non-LTE effects of Fe II lines. The dominant uncertainty in Fe non-LTE calculations for metal-poor stars is still the treatment of the inelastic H I collisions, which here have been included using scaling factors to the classical Drawin formalism, and whether or not thermalisation of the high Fe I levels to Fe II ground state should be enforced. Without such thermalisation, the Fe I non-LTE abundance corrections are substantial in metal-poor stars: about 0.3 dex with efficient (i.e. Drawin-like) H I collisions and <0.5 dex without. Without both thermalisation and H I collisions, even Fe II lines show significant non-LTE effects in such stars.
  •  
8.
  •  
9.
  •  
10.
  • Collet, Remo, 1977- (författare)
  • On the Chemical Composition of Metal-Poor Stars : Impact of Stellar Granulation and Departures from Local Thermodynamic Equilibrium on the Formation of Spectral Lines
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The information about the chemical compositions of stars is encoded in their spectra. Accurate determinations of these compositions are crucial for our understanding of stellar nucleosynthesis and Galactic chemical evolution. The determination of elemental abundances in stars requires models for the stellar atmospheres and the processes of line formation. Nearly all spectroscopic analyses of late-type stars carried out today are based on one-dimensional (1D), hydrostatic model atmospheres and on the assumption of local thermodynamic equilibrium (LTE). This approach can lead to large systematic errors in the predicted stellar atmospheric structures and line-strengths, and, hence, in the derived stellar abundances. In this thesis, examples of departures from LTE and from hydrostatic equilibrium are explored. The effects of background line opacities (line-blocking) due to atomic lines on the statistical equilibrium of Fe are investigated in late-type stars. Accounting for this line opacity is important at solar metallicity, where line-blocking significantly reduces the rates of radiatively induced ionizations of Fe. On the contrary, the effects of line-blocking in metal-poor stars are insignificant. In metal-poor stars, the dominant uncertainty in the statistical equilibrium of Fe is the treatment of inelastic H+Fe collisions. Substantial departures of Fe abundances from LTE are found at low metallicities: about 0.3 dex with efficient H+Fe collisions and about 0.5 dex without. The impact of three-dimensional (3D) hydrodynamical model atmospheres on line formation in red giant stars is also investigated. Inhomogeneities and correlated velocity fields in 3D models and differences between the mean 3D stratifications and corresponding 1D model atmospheres can significantly affect the predicted line strengths and derived abundances, in particular at very low metallicities. In LTE, the differences between 3D and 1D abundances of C, N, and O derived from CH, NH, and OH weak low-excitation lines are in the range -0.5 dex to -1.0 dex at [Fe/H]=-3. Large negative corrections (about -0.8 dex) are also found in LTE for weak low-excitation neutral Fe lines. We also investigate the impact of 3D hydrodynamical model stellar atmospheres on the determination of elemental abundances in the carbon-rich, hyper iron-poor stars HE 0107-5240 and HE 1327-2326. The lower temperatures of the line-forming regions of the 3D models compared with 1D models cause changes in the predicted spectral line strengths. In particular we find the 3D abundances of C, N, and O to be lower by about -0.8 dex (or more) than estimated from a 1D analysis. The 3D abundance of Fe is decreased but only by -0.2 dex. Departures from LTE for Fe might actually be very large for these stars and dominate over the effects due to granulation.
  •  
11.
  • Collet, Remo, et al. (författare)
  • The Chemical Compositions of the Extreme Halo Stars HE 0107-5240 and HE 1327-2326 Inferred from Three-dimensional Hydrodynamical Model Atmospheres
  • 2006
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 664:2, s. L121-L124
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • We investigate the impact of realistic three-dimensional (3D) hydrodynamical model stellar atmospheres on the determination of elemental abundances in the carbon-rich, hyper-iron-poor stars HE 0107-5240 and HE 1327-2326. We derive the chemical compositions of the two stars by means of a detailed 3D analysis of spectral lines under the assumption of local thermodynamic equilibrium (LTE). The lower temperatures of the line-forming regions of the hydrodynamical models cause changes in the predicted spectral line strengths. In particular, we find the 3D abundances of C, N, and O to be lower by about -0.8 dex (or more) than estimated from a 1D analysis. The 3D abundances of iron peak elements are also decreased but by smaller factors (about -0.2 dex). We caution, however, that the neglected non-LTE effects might actually be substantial for these metals. We finally discuss possible implications for studies of early Galactic chemical evolution.
  •  
12.
  •  
13.
  • Collet, Remo, et al. (författare)
  • Three-dimensional hydrodynamical simulations of surface convection in red giant stars : Impact on spectral line formation and abundance analysis
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 469:2, s. 687-706
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the impact of realistic three-dimensional (3D) hydrodynamical model atmospheres of red giant stars at different metallicities on the formation of spectral lines of a number of ions and molecules. Methods. We carry out realistic, ab initio, 3D, hydrodynamical simulations of surface convection at the surface of red giant stars with varying effective temperatures and metallicities. We use the convection simulations as time-dependent hydrodynamical model stellar atmospheres to calculate spectral lines of a number of ions (Li I, O I, Na I, Mg I, Ca I, Fe I, and Fe II) and molecules ( CH, NH, and OH) under the assumption of local thermodynamic equilibrium (LTE). We carry out a differential comparison of the line strengths computed in 3D with the results of analogous line formation calculations for classical, 1D, hydrostatic, plane-parallel marcs model atmospheres in order to estimate the impact of 3D models on the derivation of elemental abundances. Results. The temperature and density inhomogeneities and correlated velocity fields in 3D models, as well as the differences between the mean 3D stratifications and corresponding 1D model atmospheres significantly affect the predicted strengths of spectral lines. Under the assumption of LTE, the low atmospheric temperatures encountered in 3D model atmospheres of very metal-poor giant stars cause spectral lines from neutral species and molecules to appear stronger than within the framework of 1D models. As a consequence, elemental abundances derived from these lines using 3D models are significantly lower than according to 1D analyses. In particular, the differences between 3D and 1D abundances of C, N, and O derived from CH, NH, and OH weak low-excitation lines are found to be in the range - 0.5 dex to - 1.0 dex for the the red giant stars at [Fe/H] = - 3 considered here. At this metallicity, large negative corrections ( about - 0.8 dex) are also found, in LTE, for weak low-excitation Fe I lines. We caution, however, that the neglected departures from LTE might be significant for these and other elements and comparable to the effects due to stellar granulation.
  •  
14.
  • De Silva, G. M., et al. (författare)
  • Chemical homogeneity in collinder 261 and implications for chemical tagging
  • 2007
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 133:3, s. 1161-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from the Very Large Telescope UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr, and Ba. We find that the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However, most alpha- and s-process elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, the Hyades, and the HR 1614 moving group to examine the uniqueness of the individual cluster abundance patterns, i.e., chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.
  •  
15.
  • Frebel, Anna, et al. (författare)
  • HE 1327-2326, an unevolved star with [Fe/H] < , -5.0. II. New 3D-1D corrected abundances from a very large telescope UVES spectrum
  • 2008
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 684:1, s. 588-602
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new abundance analysis of HE 1327-2326, which is currently the most iron-poor star, based on observational data obtained with the VLT Ultraviolet and Visual Echelle Spectrograph (UVES). We correct the one-dimensional (1D) LTE abundances for three-dimensional (3D) effects to provide an abundance pattern that supersedes previous works and should be used to observationally test current models of the chemical yields of the first-generation supernovae (SNe). Apart from confirming the 1D LTE abundances found in previous studies before accounting for 3D effects, we make use of a novel technique to apply the 3D 1D corrections for CNO which are a function of excitation potential and line strength for the molecular lines that comprise the observable CH, NH, and OH features. We find that the fit to the NH band at 33608 is greatly improved due to the application of the 3D-1D corrections. This may indicate that 3D effects are actually observable in this star. We also report the first detection of several weak Ni lines. The cosmologically important element Li is still not detected, the new Li upper limit is extremely low, A(Li) < , 0: 62, and in stark contrast with results not only from the Wilkinson Microwave Anisotropy Probe (WMAP) but also from other metal-poor stars. We also discuss how the new corrected abundance pattern of HE 1327-2326 is being reproduced by individual and integrated yields of SNe.
  •  
16.
  • Korn, Andreas, et al. (författare)
  • A probable stellar solution to the cosmological lithium discrepancy
  • 2006
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 442:7103, s. 657-659
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurement of the cosmic microwave background has strongly constrained the cosmological parameters of the Universe. When the measured density of baryons (ordinary matter) is combined with standard Big Bang nucleosynthesis calculations, the amounts of hydrogen, helium and lithium produced shortly after the Big Bang can be predicted with unprecedented precision. The predicted primordial lithium abundance is a factor of two to three higher than the value measured in the atmospheres of old stars. With estimated errors of 10 to 25%, this cosmological lithium discrepancy seriously challenges our understanding of stellar physics, Big Bang nucleosynthesis or both. Certain modifications to nucleosynthesis have been proposed, but found experimentally not to be viable. Diffusion theory, however, predicts atmospheric abundances of stars to vary with time, which offers a possible explanation of the discrepancy. Here we report spectroscopic observations of stars in the metal-poor globular cluster NGC6397 that reveal trends of atmospheric abundance with evolutionary stage for various elements. These element-specific trends are reproduced by stellar-evolution models with diffusion and turbulent mixing. We thus conclude that diffusion is predominantly responsible for the low apparent stellar lithium abundance in the atmospheres of old stars by transporting the lithium deep into the star.
  •  
17.
  • Korn, Andreas, et al. (författare)
  • Atomic Diffusion and Mixing in Old Stars : I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397
  • 2007
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 671:1, s. 402-419
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar parameter differences between groups of stars, are in good agreement with broadband and Strömgren photometry calibrated on the infrared flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 30% less abundant in the turnoff point stars than in the red giants. An abundance difference in lithium is seen between the turnoff point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti, and Fe) are compared with stellar structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the subprimordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.
  •  
18.
  • Korn, Andreas J., et al. (författare)
  • New Abundances for Old Stars – Atomic Diffusion at Work in NGC 6397
  • 2006
  • Ingår i: The Messenger. - 0722-6691. ; 125, s. 6-10
  • Forskningsöversikt (populärvet., debatt m.m.)abstract
    • A homogeneous spectroscopic analysis of unevolved and evolved stars in the metal-poor globular cluster NGC 6397 with FLAMES-UVES reveals systematic trends of stellar surface abundances that are likely caused by atomic diffu-sion. This finding helps to understand, among other issues, why the lithium abundances of old halo stars are sig-nificantly lower than the abundance found to be produced shortly after the Big Bang.
  •  
19.
  • Scott, Pat, et al. (författare)
  • The elemental composition of the Sun : I. The intermediate mass elements Na to Ca
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of the Sun is an essential piece of reference data for astronomy, cosmology, astroparticle, space and geo-physics: elemental abundances of essentially all astronomical objects are referenced to the solar composition, and basically every process involving the Sun depends on its composition. This article, dealing with the intermediate-mass elements Na to Ca, is the first in a series describing the comprehensive re-determination of the solar composition. In this series we severely scrutinise all ingredients of the analysis across all elements, to obtain the most accurate, homogeneous and reliable results possible. We employ a highly realistic 3D hydrodynamic model of the solar photosphere, which has successfully passed an arsenal of observational diagnostics. For comparison, and to quantify remaining systematic errors, we repeat the analysis using three different 1D hydrostatic model atmospheres (MARCS, MISS and Holweger & Muller 1974, Sol. Phys., 39, 19) and a horizontally and temporally-averaged version of the 3D model (? 3D ?). We account for departures from local thermodynamic equilibrium (LTE) wherever possible. We have scoured the literature for the best possible input data, carefully assessing transition probabilities, hyperfine splitting, partition functions and other data for inclusion in the analysis. We have put the lines we use through a very stringent quality check in terms of their observed profiles and atomic data, and discarded all that we suspect to be blended. Our final recommended 3D+NLTE abundances are: log epsilon(Na) = 6.21 +/- 0.04, log epsilon(Mg) = 7.59 +/- 0.04, log epsilon(Al) = 6.43 +/- 0.04, log epsilon(Si) = 7.51 +/- 0.03, log epsilon(P) = 5.41 +/- 0.03, log epsilon(S) = 7.13 +/- 0.03, log epsilon(K) = 5.04 +/- 0.05 and log epsilon(Ca) = 6.32 +/- 0.03. The uncertainties include both statistical and systematic errors. Our results are systematically smaller than most previous ones with the 1D semi-empirical Holweger & Muller model, whereas the < 3D > model returns abundances very similar to the full 3D calculations. This analysis provides a complete description and a slight update of the results presented in Asplund et al. (2009, ARA&A, 47, 481) for Na to Ca, and includes full details of all lines and input data used.
  •  
20.
  • Zwitter, Tomaz, et al. (författare)
  • The GALAH survey : accurate radial velocities and library of observed stellar template spectra
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:1, s. 645-654
  • Tidskriftsartikel (refereegranskat)abstract
    • GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342 682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km s(-1) for 336 215 of these stars, achievable due to the large wavelength coverage, high resolving power, and good signal-to-noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra that are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28 000 and trace the well-populated stellar types with metallicities between -0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations, and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy