SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Condamine Fabien L.) "

Sökning: WFRF:(Condamine Fabien L.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kergoat, G. J., et al. (författare)
  • Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family
  • 2014
  • Ingår i: Bmc Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 14:220
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses. Results: Age estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates. Conclusions: We hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time.
  •  
2.
  • Chazot, Nicolas, et al. (författare)
  • Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.
  •  
3.
  • Chazot, Nicolas, et al. (författare)
  • Into the Andes : multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 25:22, s. 5765-5784
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding why species richness peaks along the Andes is a fundamental question in the study of Neotropical biodiversity. Several biogeographic and diversification scenarios have been proposed in the literature, but there is confusion about the processes underlying each scenario, and assessing their relative contribution is not straightforward. Here, we propose to refine these scenarios into a framework which evaluates four evolutionary mechanisms: higher speciation rate in the Andes, lower extinction rates in the Andes, older colonization times and higher colonization rates of the Andes from adjacent areas. We apply this framework to a species-rich subtribe of Neotropical butterflies whose diversity peaks in the Andes, the Godyridina (Nymphalidae: Ithomiini). We generated a time-calibrated phylogeny of the Godyridina and fitted time-dependent diversification models. Using trait-dependent diversification models and ancestral state reconstruction methods we then compared different biogeographic scenarios. We found strong evidence that the rates of colonization into the Andes were higher than the other way round. Those colonizations and the subsequent local diversification at equal rates in the Andes and in non-Andean regions mechanically increased the species richness of Andean regions compared to that of non-Andean regions (‘species-attractor’ hypothesis). We also found support for increasing speciation rates associated with Andean lineages. Our work highlights the importance of the Andean slopes in repeatedly attracting non-Andean lineages, most likely as a result of the diversity of habitats and/or host plants. Applying this analytical framework to other clades will bring important insights into the evolutionary mechanisms underlying the most species-rich biodiversity hotspot on the planet.
  •  
4.
  • Couvreur, T. L. P., et al. (författare)
  • Global diversification o f a tropical plant growth form: Environmental correlates and historical contingencies in climbing palms
  • 2015
  • Ingår i: Frontiers in Genetics. - : Frontiers Research Foundation. - 1664-8021. ; 5:DEC
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past andpresent-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analysis of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habit may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.
  •  
5.
  • Lagomarsino, L. P., et al. (författare)
  • The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae)
  • 2016
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 210:4, s. 1430-1442
  • Tidskriftsartikel (refereegranskat)abstract
    • The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity.
  •  
6.
  • Perez-Escobar, Oscar A., et al. (författare)
  • The origin and speciation of orchids
  • 2024
  • Ingår i: NEW PHYTOLOGIST. - 0028-646X .- 1469-8137.
  • Tidskriftsartikel (refereegranskat)abstract
    • Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.
  •  
7.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Amazonia is the primary source of Neotropical biodiversity
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:23, s. 6034-6039
  • Tidskriftsartikel (refereegranskat)abstract
    • The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climatic changes. However, we still lack a basic understanding of how Neotropical biodiversity was assembled over evolutionary timescales. Here we infer the timing and origin of the living biota in all major Neotropical regions by performing a cross-taxonomic biogeographic analysis based on 4,450 species from six major clades across the tree of life (angiosperms, birds, ferns, frogs, mammals, and squamates), and integrate > 1.3 million species occurrences with large-scale phylogenies. We report an unprecedented level of biotic interchange among all Neotropical regions, totaling 4,525 dispersal events. About half of these events involved transitions between major environmental types, with a predominant directionality from forested to open biomes. For all taxonomic groups surveyed here, Amazonia is the primary source of Neotropical diversity, providing > 2,800 lineages to other regions. Most of these dispersal events were to Mesoamerica (similar to 1,500 lineages), followed by dispersals into open regions of northern South America and the Cerrado and Chaco biomes. Biotic interchange has taken place for > 60 million years and generally increased toward the present. The total amount of time lineages spend in a region appears to be the strongest predictor of migration events. These results demonstrate the complex origin of tropical ecosystems and the key role of biotic interchange for the assembly of regional biotas.
  •  
8.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • SUPERSMART: ecology and evolution in the era of big data
  • 2014
  • Ingår i: PeerJ PrePrints. - : PeerJ. - 2167-9843.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Rapidly growing biological data volumes – including molecular sequences, species traits, geographic occurrences, specimen collections, and fossil records – hold an unprecedented, yet largely unexplored potential to reveal how ecological and evolutionary processes generate and maintain biodiversity. Most biodiversity studies integrating ecological data and evolutionary history use an idiosyncratic step-by-step approach for the reconstruction of time-calibrated phylogenies in light of ecological and evolutionary scenarios. Here we introduce a conceptual framework, termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of biodiversity research. This framework reconstructs dated phylogenies based on the assembly of molecular datasets and collects pertinent data on ecology, distribution, and fossils of the focal clade. The data handled for each step are continuously updated as databases accumulate new records. We exemplify the practice of our method by presenting comprehensive phylogenetic and dating analyses for the orders Primates and the Gentianales. We believe that this emerging framework will provide an invaluable tool for a wide range of hypothesis-driven research questions in ecology and evolution.
  •  
9.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • Toward a Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa.
  • 2017
  • Ingår i: Systematic biology. - : Oxford University Press (OUP). - 1076-836X .- 1063-5157. ; 66:2, s. 152-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapidly growing biological data-including molecular sequences and fossils-hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a "Dated Tree of Life" where all node ages are directly comparable. [Bayesian phylogenetics; data mining; divide-and-conquer methods; GenBank; multilocus multispecies coalescent; next-generation sequencing; palms; primates; tree calibration.].
  •  
10.
  • Condamine, Fabien L., et al. (författare)
  • Ancient islands acted as refugia and pumps for conifer diversity
  • 2017
  • Ingår i: Cladistics. - : Wiley. - 0748-3007 .- 1096-0031. ; 33:1, s. 69-92
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 The Willi Hennig Society.Island species are thought to be extinction-prone because of small population sizes, restricted geographical distribution and limited dispersal ability. However, the topographical and environmental heterogeneity, geographical isolation and stability of islands over long timescales could create refugia for taxa whose source area is threatened by environmental changes. We address this possibility by inferring the evolution of the New Caledonia (NC) and New Zealand (NZ) conifer diversity, which represents over 10% of the world's diversity for this group. We estimate speciation and extinction rates in relation to the presence/absence on these islands, and dispersal rates between the islands and surrounding areas. We also test the Eocene submersion of NC and the Oligocene drowning of NZ by comparing the fit of biogeographical scenarios using ancestral area estimations. We find that extinction rates were significantly lower for island species, and dispersal "out of islands" was higher. A model including a diversification shift when NC emerged better explains the diversification dynamics. Biogeographical analyses corroborate that conifers experienced high continental extinctions, but survived on islands. NC and NZ have thus contributed to the world's conifer diversity as "island refugia", by maintaining early-diverging lineages from continents during environmental changes on continents. These ancient islands also acted as "species pumps", providing species into adjacent areas. Our study highlights the important but neglected role of islands in promoting the evolution and conservation of biodiversity.
  •  
11.
  • Condamine, Fabien L., et al. (författare)
  • Historical species losses in bumblebee evolution
  • 2015
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating how species coped with past environmental changes informs how modern species might face human-induced global changes, notably via the study of historical extinction, a dominant feature that has shaped current biodiversity patterns. The genus Bombus, which comprises 250 mostly cold-adapted species, is an iconic insect group sensitive to current global changes. Through a combination of habitat loss, pathogens and climate change, bumblebees have experienced major population declines, and several species are threatened with extinction. Using a time-calibrated tree of Bombus, we analyse their diversification dynamics and test hypotheses about the role of extinction during major environmental changes in their evolutionary history. These analyses support a history of fluctuating species dynamics with two periods of historical species loss in bumblebees. Dating estimates gauge that one of these events started after the middle Miocene climatic optimum and one during the early Pliocene. Both periods are coincident with global climate change that may have extirpated Bombus species. Interestingly, bumblebees experienced high diversification rates during the Plio-Pleistocene glaciations. We also found evidence for a major species loss in the past one million years that may be continuing today.
  •  
12.
  • Condamine, Fabien L., et al. (författare)
  • Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating
  • 2015
  • Ingår i: Bmc Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bayesian relaxed-clock dating has significantly influenced our understanding of the timeline of biotic evolution. This approach requires the use of priors on the branching process, yet little is known about their impact on divergence time estimates. We investigated the effect of branching priors using the iconic cycads. We conducted phylogenetic estimations for 237 cycad species using three genes and two calibration strategies incorporating up to six fossil constraints to (i) test the impact of two different branching process priors on age estimates, (ii) assess which branching prior better fits the data, (iii) investigate branching prior impacts on diversification analyses, and (iv) provide insights into the diversification history of cycads. Results: Using Bayes factors, we compared divergence time estimates and the inferred dynamics of diversification when using Yule versus birth-death priors. Bayes factors were calculated with marginal likelihood estimated with stepping-stone sampling. We found striking differences in age estimates and diversification dynamics depending on prior choice. Dating with the Yule prior suggested that extant cycad genera diversified in the Paleogene and with two diversification rate shifts. In contrast, dating with the birth-death prior yielded Neogene diversifications, and four rate shifts, one for each of the four richest genera. Nonetheless, dating with the two priors provided similar age estimates for the divergence of cycads from Ginkgo (Carboniferous) and their crown age (Permian). Of these, Bayes factors clearly supported the birth-death prior. Conclusions: These results suggest the choice of the branching process prior can have a drastic influence on our understanding of evolutionary radiations. Therefore, all dating analyses must involve a model selection process using Bayes factors to select between a Yule or birth-death prior, in particular on ancient clades with a potential pattern of high extinction. We also provide new insights into the history of cycad diversification because we found (i) periods of extinction along the long branches of the genera consistent with fossil data, and (ii) high diversification rates within the Miocene genus radiations.
  •  
13.
  • Gibb, G. C., et al. (författare)
  • Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans
  • 2016
  • Ingår i: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:3, s. 621-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Condamine, Fabien L. (13)
Antonelli, Alexandre ... (6)
Scharn, Ruud (3)
Silvestro, Daniele (3)
Töpel, Mats H., 1973 (2)
Nilsson, R. Henrik, ... (2)
visa fler...
Oxelman, Bengt, 1958 (2)
Bacon, Christine D. (2)
Sauquet, Hervé (2)
Sanderson, Michael J (2)
Vos, Rutger A (2)
Chazot, Nicolas (2)
Jiggins, Chris D. (2)
Elias, Marianne (2)
Freitas, André V L (2)
Morlon, H. (1)
Aduse-Poku, Kwaku (1)
Wahlberg, Niklas (1)
Lohman, David J. (1)
Kodandaramaiah, Ulla ... (1)
Nylin, Sören (1)
Wheat, Christopher W ... (1)
Nilsson, Karin (1)
Matos-Maraví, Pável (1)
Zizka, Alexander, 19 ... (1)
Clamens, A. -L. (1)
Jaramillo, Carlos (1)
Carvalho, Fernanda A ... (1)
Morlon, Hélène (1)
Kissling, W. D. (1)
Mulch, A. (1)
Baker, William J. (1)
Forest, Felix (1)
Perez-Escobar, Oscar ... (1)
Przelomska, Natalia ... (1)
Maurin, Olivier (1)
Zuntini, Alexandre R ... (1)
Hettling, Johannes (1)
Hettling, Hannes (1)
Vos, Karin (1)
Svenning, J. C. (1)
Baker, W. J. (1)
Chase, Mark W. (1)
Vila, Roger (1)
Fay, Michael F. (1)
Dudas, Gytis (1)
Peña, Carlos (1)
Warren, Andrew D. (1)
Penz, Carla M. (1)
DeVries, Phil (1)
visa färre...
Lärosäte
Göteborgs universitet (11)
Lunds universitet (2)
Stockholms universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy