SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Constantinidis I.) "

Sökning: WFRF:(Constantinidis I.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bousquet, J, et al. (författare)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • Ingår i: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Grant, S. C., et al. (författare)
  • Alginate assessment by NMR microscopy
  • 2005
  • Ingår i: Journal of materials science. Materials in medicine. - : Springer Science and Business Media LLC. - 0957-4530 .- 1573-4838. ; 16:6, s. 511-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Alginate hydrogels have long been used to encapsulate cells for the purpose of cell transplantation. However, they also have been criticized because they fail to consistently maintain their integrity for extended periods of time. Two issues of critical importance that have yet to be thoroughly addressed concerning the long-term integrity of alginate/poly-L-lysine/alginate microcapsules are: (i) are there temporal changes in the alginate/poly-L-lysine interaction and (ii) are there temporal changes in the alginate gel structure. NMR microscopy is a non-invasive analytical technique that can address these issues. in this report, we present data to demonstrate the utility of H-1 NMR microscopy to (i) visualize the poly-L-lysine layer in an effort to address the first question, and (ii) to observe temporal changes in the alginate matrix that may represent changes in the gel structure.
  •  
8.
  •  
9.
  • Hilpold, A., et al. (författare)
  • Phylogeny of the Centaurea group (Centaurea, Compositae) – geography is a better predictor than morphology
  • 2014
  • Ingår i: Molecular Phylogenetics and Evolution. - 1055-7903 .- 1095-9513. ; 77, s. 195-215
  • Tidskriftsartikel (refereegranskat)abstract
    • The Centaurea group is part of the Circum-Mediterranean Clade (CMC) of genus Centaurea subgenus Centaurea, a mainly Mediterranean plant group with more than 200 described species. The group is traditionally split on morphological basis into three sections: Centaurea, Phalolepis and Willkommia. This division, however, is doubtful, especially in light of molecular approaches. In this study we try to resolve this phylogenetic problem and to consolidate the circumscription and delimitation of the entire group against other closely related groups. We analyzed nuclear (internal transcribed spacer of the ribosomal genes) and chloroplast (rpl32-trnL intergenic spacer) DNA regions for most of the described species of the Centaurea group using phylogenetic and network approaches, and we checked the data for recombination. Phylogeny was used to reconstruct the evolution of the lacerate-membranaceous bract appendages using parsimony. The magnitude of incomplete lineage sorting was tested estimating the effective population sizes. Molecular dating was performed using a Bayesian approach, and the ancestral area reconstruction was conducted using the Dispersal–Extinction–Cladogenesis method. Monophyly of the Centaurea group is confirmed if a few species are removed. Our results do not support the traditional sectional division. There is a high incongruence between the two markers and between genetic data and morphology. However, there is a clear relation between geography and the structure of the molecular data. Diversification in the Centaurea group mainly took place during the Pliocene and Pleistocene. The ancestral area infered for the Circum-Mediterranean Clade of Centaurea is the Eastern Mediterranean, whereas for the Centaurea group it is most likely NW-Africa. The large incongruencies, which hamper phylogenetic reconstruction, are probably the result of introgression, even though the presence of incomplete lineage sorting as an additional factor cannot be ruled out. Convergent evolution of morphological traits may have led to incongruence between morphology-based, traditional systematics and molecular results. Our results also cast major doubts about current species delimitation.
  •  
10.
  • Simpson, N. E., et al. (författare)
  • Biochemical consequences of alginate encapsulation : A NMR study of insulin-secreting cells
  • 2006
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 27:12, s. 2577-2586
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we explore the biochemical consequences of alginate encapsulation on beta TC3 cells. C-13 NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between monolayer and algainate-encapsulated cultures. The principal cause for these effects was the process of trypsinization. Embedding the trypsinized cells in alginate beads did not have a compounded effect on the enzymatic fluxes of entrapped cells. However, an additional small but statistically significant decrease in insulin secretion was measured in encapsulated cells. Finally, differences in either enzymatic fluxes or Qlucose consumption as a function of bead diameter were not observed. However, differences in T-2, assessed by H-1 NMR microimaging, were observed as a function of bead diameter, suggesting that smaller beads became more organized with time in culture, while larger beads displayed a looser organization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy