SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Controzzi M.) "

Sökning: WFRF:(Controzzi M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ortiz Catalan, Max Jair, 1982, et al. (författare)
  • A highly integrated bionic hand with neural control and feedback for use in daily life
  • 2023
  • Ingår i: Science Robotics. - 2470-9476. ; 8:83
  • Tidskriftsartikel (refereegranskat)abstract
    • Restoration of sensorimotor function after amputation has remained challenging because of the lack of human-machine interfaces that provide reliable control, feedback, and attachment. Here, we present the clinical implementation of a transradial neuromusculoskeletal prosthesis-a bionic hand connected directly to the user's nervous and skeletal systems. In one person with unilateral below-elbow amputation, titanium implants were placed intramedullary in the radius and ulna bones, and electromuscular constructs were created surgically by transferring the severed nerves to free muscle grafts. The native muscles, free muscle grafts, and ulnar nerve were implanted with electrodes. Percutaneous extensions from the titanium implants provided direct skeletal attachment and bidirectional communication between the implanted electrodes and a prosthetic hand. Operation of the bionic hand in daily life resulted in improved prosthetic function, reduced postamputation, and increased quality of life. Sensations elicited via direct neural stimulation were consistently perceived on the phantom hand throughout the study. To date, the patient continues using the prosthesis in daily life. The functionality of conventional artificial limbs is hindered by discomfort and limited and unreliable control. Neuromusculoskeletal interfaces can overcome these hurdles and provide the means for the everyday use of a prosthesis with reliable neural control fixated into the skeleton.
  •  
2.
  • Malešević, Nebojša, et al. (författare)
  • A database of high-density surface electromyogram signals comprising 65 isometric hand gestures
  • 2021
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Control of contemporary, multi-joint prosthetic hands is commonly realized by using electromyographic signals from the muscles remaining after amputation at the forearm level. Although this principle is trying to imitate the natural control structure where muscles control the joints of the hand, in practice, myoelectric control provides only basic hand functions to an amputee using a dexterous prosthesis. This study aims to provide an annotated database of high-density surface electromyographic signals to aid the efforts of designing robust and versatile electromyographic control interfaces for prosthetic hands. The electromyographic signals were recorded using 128 channels within two electrode grids positioned on the forearms of 20 able-bodied volunteers. The participants performed 65 different hand gestures in an isometric manner. The hand movements were strictly timed using an automated recording protocol which also synchronously recorded the electromyographic signals and hand joint forces. To assess the quality of the recorded signals several quantitative assessments were performed, such as frequency content analysis, channel crosstalk, and the detection of poor skin-electrode contacts.
  •  
3.
  • Mastinu, Enzo, 1987, et al. (författare)
  • Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand
  • 2019
  • Ingår i: Journal of Neuroengineering and Rehabilitation. - : Springer Science and Business Media LLC. - 1743-0003. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Replacement of a lost limb by an artificial substitute is not yet ideal. Resolution and coordination of motor control approximating that of a biological limb could dramatically improve the functionality of prosthetic devices, and thus reduce the gap towards a suitable limb replacement. Methods: In this study, we investigated the control resolution and coordination exhibited by subjects with transhumeral amputation who were implanted with epimysial electrodes and an osseointegrated interface that provides bidirectional communication in addition to skeletal attachment (e-OPRA Implant System). We assessed control resolution and coordination in the context of routine and delicate grasping using the Pick and Lift and the Virtual Eggs Tests. Performance when utilizing implanted electrodes was compared with the standard-of-care technology for myoelectric prostheses, namely surface electrodes. Results: Results showed that implanted electrodes provide superior controllability over the prosthetic terminal device compared to conventional surface electrodes. Significant improvements were found in the control of the grip force and its reliability during object transfer. However, these improvements failed to increase motor coordination, and surprisingly decreased the temporal correlation between grip and load forces observed with surface electrodes. We found that despite being more functional and reliable, prosthetic control via implanted electrodes still depended highly on visual feedback. Conclusions: Our findings indicate that incidental sensory feedback (visual, auditory, and osseoperceptive in this case) is insufficient for restoring natural grasp behavior in amputees, and support the idea that supplemental tactile sensory feedback is needed to learn and maintain the motor tasks internal model, which could ultimately restore natural grasp behavior in subjects using prosthetic hands. © 2019 The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy