SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cordeddu Lina) "

Sökning: WFRF:(Cordeddu Lina)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Assadi, Ghazaleh, et al. (författare)
  • Functional Analyses of the Crohn's Disease Risk Gene LACC1
  • 2016
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library of Science. - 1932-6203. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genetic variation in the Laccase (multicopper oxidoreductase) domain-containing 1 (LACC1) gene has been shown to affect the risk of Crohn's disease, leprosy and, more recently, ulcerative colitis and juvenile idiopathic arthritis. LACC1 function appears to promote fatty-acid oxidation, with concomitant inflammasome activation, reactive oxygen species production, and anti-bacterial responses in macrophages. We sought to contribute to elucidating LACC1 biological function by extensive characterization of its expression in human tissues and cells, and through preliminary analyses of the regulatory mechanisms driving such expression.Methods: We implemented Western blot, quantitative real-time PCR, immunofluorescence microscopy, and flow cytometry analyses to investigate fatty acid metabolism-immune nexus (FAMIN; the LACC1 encoded protein) expression in subcellular compartments, cell lines and relevant human tissues. Gene-set enrichment analyses were performed to initially investigate modulatory mechanisms of LACC1 expression. A small-interference RNA knockdown in vitro model system was used to study the effect of FAMIN depletion on peroxisome function.Results: FAMIN expression was detected in macrophage-differentiated THP-1 cells and several human tissues, being highest in neutrophils, monocytes/macrophages, myeloid and plasmacytoid dendritic cells among peripheral blood cells. Subcellular co-localization was exclusively confined to peroxisomes, with some additional positivity for organelle endomembrane structures. LACC1 co-expression signatures were enriched for genes involved in peroxisome proliferator-activated receptors (PPAR) signaling pathways, and PPAR ligands downregulated FAMIN expression in in vitro model systems.Conclusion: FAMIN is a peroxisome-associated protein with primary role(s) in macrophages and other immune cells, where its metabolic functions may be modulated by PPAR signaling events. However, the precise molecular mechanisms through which FAMIN exerts its biological effects in immune cells remain to be elucidated.
  •  
2.
  • Cordeddu, Lina, et al. (författare)
  • Severe gastrointestinal dysmotility developed after treatment with gonadotropin-releasing hormone analogs
  • 2015
  • Ingår i: Scandinavian Journal of Gastroenterology. - : Informa UK Limited. - 1502-7708 .- 0036-5521. ; 50:3, s. 291-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Sporadic cases of abdominal pain and dysmotility has been described after treatment with gonadotropin-releasing hormone (GnRH) analogs. The aim of the present study was to scrutinize for patients with severe gastrointestinal complaints after treatment with GnRH analogs, to describe the expression of antibodies against progonadoliberin-2, GnRH1, GnRH receptor (GnRHR), luteinizing hormone (LH), and LH receptor in serum in these patients, and to search for possible triggers and genetic factors behind the development of this dysmotility. Methods. Patients suffering from prolonged gastrointestinal complaints after treatment with GnRH analogs at the Department of Gastroenterology, Skane University Hospital, were included. GnRHR and LH receptor (LHCGR) genes were exome-sequenced. Serum was analyzed by enzyme-linked immune sorbent assays for the presence of antibodies. Healthy blood donors and women treated with GnRH analogs because of in vitro fertilization (IVF) were used as controls. Results. Seven patients with severe gastrointestinal complaints after GnRH treatment were identified, of whom six suffered from endometriosis. Several variants were found within the 11 exons of LHCGR. The minor allele G, at the single nucleotide polymorphism rs6755901, was detected in homozygosity in two patients (28.5%) who had developed chronic intestinal pseudo-obstruction and in 5.5% of the IVF controls. Three patients expressed IgM antibodies against progonadoliberin-2 and three against GnRH1 (42.9%) when cut off was set to a titer >97.5th percentile in blood donors. Conclusion. A high prevalence of endometriosis, polymorphism in the LHCGR and GnRH1 and progonadoliberin-2 antibodies in serum was found among the patients with severe dysmotility after treatment with GnRH analogs.
  •  
3.
  • Larsson, Chatarina, 1979-, et al. (författare)
  • Restoration of KMT2C/MLL3 in human colorectal cancer cells reinforces genome-wide H3K4me1 profiles and influences cell growth and gene expression
  • 2020
  • Ingår i: Clinical Epigenetics. - : Springer Nature. - 1868-7083 .- 1868-7075. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The histone 3 lysine 4 (H3K4) monomethylase KMT2C is mutated across several cancer types; however, the effects of mutations on epigenome organization, gene expression, and cell growth are not clear. A frequently recurring mutation in colorectal cancer (CRC) with microsatellite instability is a single nucleotide deletion within the exon 38 poly-A(9) repeat (c.8390delA) which results in frameshift preceding the functional carboxy-terminal SET domain. To study effects ofKMT2Cexpression in CRC cells, we restored one allele to wild typeKMT2Cin the two CRC cell lines RKO and HCT116, which both are homozygous c.8390delA mutant. Results Gene editing resulted in increasedKMT2Cexpression, increased H3K4me1 levels, altered gene expression profiles, and subtle negative effects on cell growth, where higher dependence and stronger effects ofKMT2Cexpression were observed in RKO compared to HCT116 cells. Surprisingly, we found that the two RKO and HCT116 CRC cell lines have distinct baseline H3K4me1 epigenomic profiles. In RKO cells, a flatter genome-wide H3K4me1 profile was associated with more increased H3K4me1 deposition at enhancers, reduced cell growth, and more differential gene expression relative to HCT116 cells when KMT2C was restored. Profiling of H3K4me1 did not indicate a highly specific regulation of gene expression as KMT2C-induced H3K4me1 deposition was found globally and not at a specific enhancer sub-set in the engineered cells. Although we observed variation in differentially regulated gene sets between cell lines and individual clones, differentially expressed genes in both cell lines included genes linked to known cancer signaling pathways, estrogen response, hypoxia response, and aspects of immune system regulation. Conclusions Here, KMT2C restoration reduced CRC cell growth and reinforced genome-wide H3K4me1 deposition at enhancers; however, the effects varied depending upon the H3K4me1 status of KMT2C deficient cells. Results indicate that KMT2C inactivation may promote colorectal cancer development through transcriptional dysregulation in several pathways with known cancer relevance.
  •  
4.
  • Mujahed, Huthayfa, et al. (författare)
  • AML displays increased CTCF occupancy associated with aberrant gene expression and transcription factor binding
  • 2020
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 136:3, s. 339-352
  • Tidskriftsartikel (refereegranskat)abstract
    • CCTC-binding factor (CTCF) is a key regulator of gene expression through organization of the chromatin structure. Still, it is unclear how CTCF binding is perturbed in leukemia or in cancer in general. We studied CTCF binding by chromatin immunoprecipitation sequencing in cells from patients with acute myeloid leukemia (AML) and in normal bone marrow (NBM) in the context of gene expression, DNA methylation, and azacitidine exposure. CTCF binding was increased in AML compared with NBM. Aberrant CTCF binding was enriched for motifs for key myeloid transcription factors such as CEBPA, PU.1, and RUNX1. AML with TET2 mutations was characterized by a particularly strong gain of CTCF binding, highly enriched for gain in promoter regions, while AML in general was enriched for changes at enhancers. There was a strong anticorrelation between CTCF binding and DNA methylation. Gain of CTCF occupancy was associated with increased gene expression; however, the genomic location (promoter vs distal regions) and enrichment of motifs (for repressing vs activating cofactors) were decisive for the gene expression pattern. Knockdown of CTCF in K562 cells caused loss of CTCF binding and transcriptional repression of genes with changed CTCF binding in AML, as well as loss of RUNX1 binding at RUNX1/CTCF-binding sites. In addition, CTCF knockdown caused increased differentiation. Azacitidine exposure caused major changes in CTCF occupancy in AML patient cells, partly by restoring a CTCF-binding pattern similar to NBM. We conclude that AML displays an aberrant increase in CTCF occupancy that targets key genes for AML development and impacts gene expression.
  •  
5.
  • Qu, Ying, et al. (författare)
  • Cancer specific changes in DNA methylation reveal aberrant silencing and activation of enhancers in leukemia
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 129:7, s. e13-e25
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute myeloid leukemia (AML) is characterized by an impaired differentiation process leading to an accumulation of immature blasts in the blood. One feature of cytogenetically normal AML is alterations to the DNA methylome. Here we have analyzed 57 AML patients with normal karyotype using Illuminas 450 k array and show that aberrant DNA methylation is significantly altered at enhancer regions and that the methylation levels at specific enhancers predict overall survival of AML patients. The majority of sites that become differentially methylated in AML occur in regulatory elements of the human genome. Hypermethylation associates with enhancer silencing. In addition, ChIP-seq analyses showed that a subset of hypomethylated sites correlate with enhancer activation, indicated by increased H3K27 acetylation. DNA hypomethylation is not therefore sufficient for enhancer activation. Some sites of hypomethylation occur at weak / poised enhancers marked with H3K4 monomethylation in hematopoietic progenitor cells. Other hypomethylated regions occur at sites inactive in progenitors and reflect the de novo acquisition of AML specific enhancers. Altered enhancer dynamics are reflected in the gene expression of enhancer target genes including genes involved in oncogenesis and blood cell development. This study demonstrates that histone variants and different histone modifications interact with aberrant DNA methylation, causing perturbed enhancer activity in CN-AML that contributes to a leukemic transcriptome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy