SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Corley Douglas) "

Search: WFRF:(Corley Douglas)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Archambault, Alexi N., et al. (author)
  • Cumulative Burden of Colorectal Cancer Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer
  • 2020
  • In: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1274-1286.e12
  • Journal article (peer-reviewed)abstract
    • BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC.METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants.RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 x 10(-5)). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings.CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
  •  
2.
  •  
3.
  • Ben-Avraham, Dan, et al. (author)
  • The complex genetics of gait speed : Genome-wide meta-analysis approach
  • 2017
  • In: Aging. - : Impact Journals, LLC. - 1945-4589. ; 9:1, s. 209-246
  • Journal article (peer-reviewed)abstract
    • Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
  •  
4.
  • Erzurumluoglu, A. Mesut, et al. (author)
  • Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
  • 2020
  • In: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:10, s. 2392-2409
  • Journal article (peer-reviewed)abstract
    • Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
  •  
5.
  • Fernandez-Rozadilla, Ceres, et al. (author)
  • Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries
  • 2023
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 55, s. 89-99
  • Journal article (peer-reviewed)abstract
    • Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
  •  
6.
  • Lee, Eunjung, et al. (author)
  • Pleiotropic Analysis of Cancer Risk Loci on Esophageal Adenocarcinoma Risk.
  • 2015
  • In: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 24:11
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Several cancer-associated loci identified from genome-wide association studies (GWAS) have been associated with risks of multiple cancer sites, suggesting pleiotropic effects. We investigated whether GWAS-identified risk variants for other common cancers are associated with risk of esophageal adenocarcinoma (EA) or its precursor, Barrett's esophagus.METHODS: We examined the associations between risks of EA and Barrett's esophagus and 387 SNPs that have been associated with risks of other cancers, by using genotype imputation data on 2,163 control participants and 3,885 (1,501 EA and 2,384 Barrett's esophagus) case patients from the Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study, and investigated effect modification by smoking history, body mass index (BMI), and reflux/heartburn.RESULTS: After correcting for multiple testing, none of the tested 387 SNPs were statistically significantly associated with risk of EA or Barrett's esophagus. No evidence of effect modification by smoking, BMI, or reflux/heartburn was observed.CONCLUSIONS: Genetic risk variants for common cancers identified from GWAS appear not to be associated with risks of EA or Barrett's esophagus.IMPACT: To our knowledge, this is the first investigation of pleiotropic genetic associations with risks of EA and Barrett's esophagus. Cancer Epidemiol Biomarkers Prev; 24(11); 1801-3. ©2015 AACR.
  •  
7.
  • Levine, David M, et al. (author)
  • A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus.
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:12
  • Journal article (peer-reviewed)abstract
    • Esophageal adenocarcinoma is a cancer with rising incidence and poor survival. Most such cancers arise in a specialized intestinal metaplastic epithelium, which is diagnostic of Barrett's esophagus. In a genome-wide association study, we compared esophageal adenocarcinoma cases (n = 2,390) and individuals with precancerous Barrett's esophagus (n = 3,175) with 10,120 controls in 2 phases. For the combined case group, we identified three new associations. The first is at 19p13 (rs10419226: P = 3.6 × 10(-10)) in CRTC1 (encoding CREB-regulated transcription coactivator), whose aberrant activation has been associated with oncogenic activity. A second is at 9q22 (rs11789015: P = 1.0 × 10(-9)) in BARX1, which encodes a transcription factor important in esophageal specification. A third is at 3p14 (rs2687201: P = 5.5 × 10(-9)) near the transcription factor FOXP1, which regulates esophageal development. We also refine a previously reported association with Barrett's esophagus near the putative tumor suppressor gene FOXF1 at 16q24 and extend our findings to now include esophageal adenocarcinoma.
  •  
8.
  • Marouli, Eirini, et al. (author)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Journal article (peer-reviewed)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
9.
  • Su, Yu-Ru, et al. (author)
  • Validation of a genetic-enhanced risk prediction model for colorectal cancer in a large community-based cohort
  • 2023
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American association for cancer research. - 1055-9965 .- 1538-7755. ; 32:3, s. 353-362
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Polygenic risk scores (PRS) which summarize individuals' genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance.METHODS: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group).RESULTS: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91-1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71-0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P < 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P < 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity.CONCLUSIONS: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort.IMPACT: The proposed model has potential utility in risk-stratified colorectal cancer prevention.
  •  
10.
  • Su, Zhan, et al. (author)
  • Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus.
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Journal article (peer-reviewed)abstract
    • Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.
  •  
11.
  • Thomas, Minta, et al. (author)
  • Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
  •  
12.
  • Thomas, Minta, et al. (author)
  • Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.
  • 2020
  • In: American Journal of Human Genetics. - Cambridge : Elsevier BV. - 0002-9297 .- 1537-6605. ; 107:3, s. 432-444
  • Journal article (peer-reviewed)abstract
    • Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
  •  
13.
  • Thomas, Minta, et al. (author)
  • Response to Li and Hopper
  • 2021
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 108:3, s. 527-529
  • Journal article (peer-reviewed)
  •  
14.
  • Thrift, Aaron P, et al. (author)
  • Obesity and risk of esophageal adenocarcinoma and Barrett's esophagus : a Mendelian randomization study.
  • 2014
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 106:11
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Data from observational studies suggest that body mass index (BMI) is causally related to esophageal adenocarcinoma (EAC) and its precursor, Barrett's esophagus (BE). However, the relationships may be affected by bias and confounding.METHODS: We used data from the Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study: 999 patients with EAC, 2061 patients with BE, and 2169 population controls. We applied the two-stage control function instrumental variable method of the Mendelian randomization approach to estimate the unbiased, unconfounded effect of BMI on risk of EAC and BE. This was performed using a genetic risk score, derived from 29 genetic variants shown to be associated with BMI, as an instrument for lifetime BMI. A higher score indicates propensity to obesity. All tests were two-sided.RESULTS: The genetic risk score was not associated with potential confounders, including gastroesophageal reflux symptoms and smoking. In the instrumental variable analyses (IV), EAC risk increased by 16% (IV-odds ratio [OR] = 1.16, 95% confidence interval [CI] = 1.01 to 1.33) and BE risk increased by 12% (IV-OR = 1.12, 95% CI = 1.00 to 1.25) per 1kg/m(2) increase in BMI. BMI was statistically significantly associated with EAC and BE in conventional epidemiologic analyses.CONCLUSIONS: People with a high genetic propensity to obesity have higher risks of esophageal metaplasia and neoplasia than people with low genetic propensity. These analyses provide the strongest evidence to date that obesity is independently associated with BE and EAC, and is not due to confounding or bias inherent in conventional epidemiologic analyses.
  •  
15.
  • Turcot, Valerie, et al. (author)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
16.
  • Xie, Shao-Hua, et al. (author)
  • Association between levels of sex hormones and risk of esophageal adenocarcinoma and Barrett’s esophagus
  • 2019
  • In: Clinical Gastroenterology and Hepatology. - Stockholm : Karolinska Institutet, Dept of Molecular Medicine and Surgery. - 1542-3565. ; 18:12, s. 2701-
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Esophageal adenocarcinoma (EAC) occurs most frequently in men. We performed a Mendelian randomization analysis to investigate whether genetic factors that regulate levels of sex hormones associated with risk of EAC or Barrett’s esophagus (BE). Methods: We conducted a Mendelian randomization analysis using data from patients with EAC (n=2488) or BE (n=3247) and control participants (n=2127), included in international consortia of genome-wide association studies in Australia, Europe, and North America. Genetic risk scores or single nucleotide variants were used as instrumental variables for 9 specific sex hormones. Logistic regression provided odds ratios (ORs) with 95% CIs. Results: Higher genetically predicted levels of follicle stimulating hormones were associated with increased risks of EAC and/or BE in men (OR, 1.14 per allele increase; 95% CI, 1.01- 1.27) and in women (OR, 1.28; 95% CI, 1.03-1.59). Higher predicted levels of luteinizing hormone were associated with a decreased risk of EAC in men (OR, 0.92 per standard deviation increase; 95% CI, 0.87-0.99) and in women (OR, 0.93; 95% CI, 0.79-1.09), and decreased risks of BE (OR, 0.88; 95% CI, 0.77-0.99) and EAC and/or BE (OR, 0.89; 95% CI, 0.79-1.00) in women. We found no clear associations for other hormones studied, including sex hormone-binding globulin, dehydroepiandrosterone sulphate, testosterone, dihydrotestosterone, estradiol, progesterone, or free androgen index. Conclusions: In a Mendelian randomization analysis of data from patients with EAC or BE, we found an association between genetically predicted levels of follicle stimulating and luteinizing hormones and risk of BE and EAC.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view