SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Correa Baena Juan Pablo) "

Search: WFRF:(Correa Baena Juan Pablo)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aitola, Kerttu, et al. (author)
  • Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells
  • 2016
  • In: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 9:2, s. 461-466
  • Journal article (peer-reviewed)abstract
    • We demonstrate a high efficiency perovskite solar cell with a hybrid hole-transporting material-counter electrode based on a thin single-walled carbon nanotube (SWCNT) film and a drop-cast 2,2,7,-7-tetrakis(N, N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD) hole-transporting material (HTM). The average efficiency of the solar cells was 13.6%, with the record cell yielding 15.5% efficiency. The efficiency of the reference solar cells with spin-coated Spiro-OMeTAD hole-transportingmaterials (HTMs) and an evaporated gold counter electrode was 17.7% (record 18.8%), that of the cells with only a SWCNT counter electrode (CE) without additional HTM was 9.1% (record 11%) and that of the cells with gold deposited directly on the perovskite layer was 5% (record 6.3%). Our results show that it is possible to manufacture high efficiency perovskite solar cells with thin film (thickness less than 1 mu m) completely carbon-based HTMCEs using industrially upscalable manufacturing methods, such as press-transferred CEs and drop-cast HTMs.
  •  
2.
  • Aitola, Kerttu, et al. (author)
  • High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact
  • 2017
  • In: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 29:17
  • Journal article (peer-reviewed)abstract
    • Mixed ion perovskite solar cells (PSC) are manufactured with a metal-free hole contact based on press-transferred single-walled carbon nanotube (SWCNT) film infiltrated with 2,2,7,-7-tetrakis(N, N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD). By means of maximum power point tracking, their stabilities are compared with those of standard PSCs employing spin-coated Spiro-OMeTAD and a thermally evaporated Au back contact, under full 1 sun illumination, at 60 degrees C, and in a N-2 atmosphere. During the 140 h experiment, the solar cells with the Au electrode experience a dramatic, irreversible efficiency loss, rendering them effectively nonoperational, whereas the SWCNT-contacted devices show only a small linear efficiency loss with an extrapolated lifetime of 580 h.
  •  
3.
  • Anaraki, Elham Halvani, et al. (author)
  • Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells
  • 2018
  • In: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 3:4, s. 773-778
  • Journal article (peer-reviewed)abstract
    • Low-temperature planar organic inorganic lead halide perovskite solar cells have been at the center of attraction as power conversion efficiencies go beyond 20%. Here, we investigate Nb doping of SnO2 deposited by a low-cost, scalable chemical bath deposition (CBD) method. We study the effects of doping on compositional, structural, morphological, and device performance when these layers are employed as electron-selective layers (ESLs) in planar-structured PSCs. We use doping concentrations of 0, 1, 5, and 10 mol % Nb to Sn in solution. The ESLs were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and ultraviolet visible spectroscopy. ESLs with an optimum 5 mol % Nb doping yielded, on average, an improvement of all the device photovoltaic parameters with a champion power conversion efficiency of 20.5% (20.1% stabilized).
  •  
4.
  • Jacobsson, T. Jesper, et al. (author)
  • Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells : The Importance of Temperature on Device Performance
  • 2016
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:21, s. 11382-11393
  • Journal article (peer-reviewed)abstract
    • Terrestrial applications of solar cells during day-night cycling as well as operation in winter and summer involve substantial temperature variations, which influence the photophysics as well as the charge separation and transport properties in the various materials employed in a device. In this study, the optical absorption of methylammonium lead iodide (MAPbI(3)) and the device performance of MAPbI(3) solar cells have been investigated in an extended temperature range between -190 and 80 degrees C. The optical properties were found to change by only a small amount in that temperature range. The device performance did, however, show more dramatic changes and decreased in a reversible manner for temperatures both higher and lower than room temperature. For temperatures up to 80 degrees C and down to -80 degrees C, the drop in performance was up to 25% compared to the room temperature value. Given thermal stability and reversible device performance, this is probably not a showstopper for terrestrial applications of perovskite solar cells but should be considered when evaluating the total energy yield under outdoor operations. At temperatures of 100 degrees C and below, which are relevant for outer atmosphere and space applications, the performance decreases rather dramatically and approaches zero at even lower temperature. Irreversible changes set in for temperatures above 50 degrees C. In addition, the hysteresis decreases at reduced temperatures. As the effects for the absorption properties are minor, the decrease in performance can be attributed to a temperature induced limitation in the transport and extraction of the photogenerated charge carriers which is seen as a strong increase of the series resistance at reduced temperature. The drop of the photovoltage for temperatures below -100 degrees C might be related to reduced charge carrier separation in the perovskite due to excitonic effects and a lower dielectric constant.
  •  
5.
  • Jacobsson, T. Jesper, et al. (author)
  • Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells
  • 2016
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 138:32, s. 10331-10343
  • Journal article (peer-reviewed)abstract
    • Lead halide perovskites have over the past few years attracted considerable interest as photo absorbers in PV applications with record efficiencies now reaching 22%. It has recently been found that not only the composition but also the precise stoichiometry is important for the device performance. Recent reports have, for example, demonstrated small amount of PbI2 in the perovskite films to be beneficial for the overall performance of both the standard perovskite, CH3NH3PbI3, as well as for the mixed perovskites (CH3NH3)(x)-(CH(NH2)(2))((1x))PbBryI(3y). In this work a broad range of characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photo electron spectroscopy (PES), transient absorption spectroscopy (TAS), UVvis, electroluminescence (EL), photoluminescence (PL), and confocal PL mapping have been used to further understand the importance of remnant PbI2 in perovskite solar cells. Our best devices were over 18% efficient, and had in line with previous results a small amount of excess PbI2. For the PbI2-deficient samples, the photocurrent dropped, which could be attributed to accumulation of organic species at the grain boundaries, low charge carrier mobility, and decreased electron injection into the TiO2. The PbI2-deficient compositions did, however, also have advantages. The record V-oc was as high as 1.20 V and was found in PbI2-deficient samples. This was correlated with high crystal quality, longer charge carrier lifetimes, and high PL yields and was rationalized as a consequence of the dynamics of the perovskite formation. We further found the ion migration to be obstructed in the PbI2-deficient samples, which decreased the JV hysteresis and increased the photostability. PbI2-deficient synthesis conditions can thus be used to deposit perovskites with excellent crystal quality but with the downside of grain boundaries enriched in organic species, which act as a barrier toward current transport. Exploring ways to tune the synthesis conditions to give the high crystal quality obtained under PbI2-poor condition while maintaining the favorable grain boundary characteristics obtained under PbI2-rich conditions would thus be a strategy toward more efficiency devices.
  •  
6.
  • Philippe, Bertrand, 1986-, et al. (author)
  • Chemical Distribution of Multiple Cation (Rb+, Cs+, MA(+), and FA(+)) Perovskite Materials by Photoelectron Spectroscopy
  • 2017
  • In: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 29:8, s. 3589-3596
  • Journal article (peer-reviewed)abstract
    • Lead-based mixed perovskite materials have emerged in the last couple of years as promising photovoltaic materials. Recently, it was shown that improved material stability can be achieved by incorporating small amounts of inorganic cations (Cs+ and Rb+), partially replacing the more common organic cations (e.g., methylammonium, MA, and formamidinium, FA). Especially, a mixed cation composition containing Rb+, Cs+, MA(+), and FA(+) was recently shown to have beneficial optoelectronic properties and was stable at elevated temperature. This work focuses on the composition of this material using synchrotron-based photoelectron spectroscopy. Different probing depths were considered by changing the photon energy of the X-ray source providing insights on the chemical composition and the chemical distribution near the surface of the samples. Perovskite materials containing two, three, or four monovalent cations were analyzed and compared. The presence of Cs and Rb was observed both at the sample surface and toward the bulk, and we found that in the presence of three or four cations, less unreacted PbI2 remains in the sample. Interestingly, Rb and Cs appear to act jointly resulting in a different cation depth profile compared to that of the triple counterparts. Our findings provide significant understanding of the intricate depth-dependent chemical composition in perovskite materials using the common practice of cation mixing.
  •  
7.
  • Philippe, Bertrand, Dr. 1986-, et al. (author)
  • Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy : Variation with Photon Energy
  • 2017
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:48, s. 26655-26666
  • Journal article (peer-reviewed)abstract
    • A better understanding of the electronic structure of perovskite materials used in photovoltaic devices is essential for their development and optimization. In this investigation, synchrotron-based photoelectron spectroscopy (PES) was used to experimentally delineate the character and energy position of the valence band structures of a mixed perovskite. The valence band was measured using PES with photon energies ranging from ultraviolet photoelectron spectroscopy (21.2 eV) to hard X-rays (up to 4000 eV), and by taking the variation of the photoionization cross sections into account, we could experimentally determine the inorganic and organic contributions. The experiments were compared to theoretical calculations to further distinguish the role of the different anions in the electronic structure. This work also includes a thorough study of the valence band maximum and its position in relation to the Fermi level, which is crucial for the design and optimization of complete solar cells and their functional properties.
  •  
8.
  • Saygili, Yasemin, et al. (author)
  • Planar Perovskite Solar Cells with High Open-CircuitVoltage Containing a Supramolecular Iron Complex as HoleTransport Material Dopant
  • 2018
  • In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 19, s. 1-9
  • Journal article (peer-reviewed)abstract
    • n perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm-2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells.
  •  
9.
  • Sveinbjörnsson, Kári, et al. (author)
  • Ambient air-processed mixed-ion perovskites for high-efficiency solar cells
  • 2016
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:42, s. 16536-16545
  • Journal article (peer-reviewed)abstract
    • Mixed-ion (FAPbI(3))(1-x)(MAPbBr(3))(x) perovskite solar cells have achieved power conversion efficiencies surpassing 20%. However, in order to obtain these high efficiencies the preparation is performed in a controlled inert atmosphere. Here, we report a procedure for manufacturing highly efficient solar cells with a mixed-ion perovskite in ambient atmosphere. By including a heating step at moderate temperatures of the mesoporous titanium dioxide substrates, and spin-coating the perovskite solution on the warm substrates in ambient air, a red intermediate phase is obtained. Annealing the red phase at 100 degrees C results in a uniform and crystalline perovskite film, whose thickness is dependent on the substrate temperature prior to spin-coating. The temperature was optimized between 20 and 100 degrees C and it was observed that 50 degrees C substrate temperature yielded the best solar cell performances. The average efficiency of the best device was 17.6%, accounting for current-voltage (I-V) measurement hysteresis, with 18.8% performance in the backward scan direction and 16.4% in the forward scan direction. Our results show that it is possible to manufacture high-efficiency mixed-ion perovskite solar cells under ambient conditions, which is relevant for large-scale and low-cost device manufacturing processing.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view