SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cossarizza Andrea) "

Sökning: WFRF:(Cossarizza Andrea)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sensi, Matteo, et al. (författare)
  • Modulating the Faradic Operation of All-Printed Organic Electrochemical Transistors by Facile in Situ Modification of the Gate Electrode
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:3, s. 5374-5381
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) operated in the faradic regime were shown as outperforming transducers of bioelectric signals in vitro and in vivo. Fabrication by additive manufacturing techniques fosters OECTs as ideal candidates for point-of-care applications, as well as imposes limitations on the choice of materials and their processing conditions. Here, we address the question of how the response of fully printed OECTs depends on gate electrode material. Toward this end, we investigate the redox processes underlying the operation of OECTs under faradic regime, to show OECTs with carbon gate (C-gate) that exhibit no current modulation gate voltages <1.2 V. This is a hallmark that no interference with the faradic operation of the device enabled by redox processes occurs when operating C-gate OECTs in the low-voltage range as label-free biosensors for the detection of electroactive (bio)molecules. To tune the faradic response of the device, we electrodeposited Au on the carbon gate (Au-C-gate), obtaining a device that operates at lower gate voltage values than C-gate OECT. The presence of gold on the gate allowed further modification of the electrical performances by functionalization of the Au-C-gate with different self-assembled monolayers by fast potential-pulse-assisted method. Moreover, we show that the presence in the electrolyte solution of an external redox probe can be used to drive the faradic response of both C- and Au-C-gate OECTs, impacting on the gate potential window that yields effective drain current modulation. The results presented here suggest possible new strategies for controlling the faradic operation regime of OECTs sensors by chemical modification of the gate surface.
  •  
3.
  • Berto, Marcello, et al. (författare)
  • Biorecognition in Organic Field Effect Transistors Biosensors: The Role of the Density of States of the Organic Semiconductor
  • 2016
  • Ingår i: ANALYTICAL CHEMISTRY. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 88:24, s. 12330-12338
  • Tidskriftsartikel (refereegranskat)abstract
    • Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNF alpha at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNF alpha concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNF alpha concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNF alpha in human-plasma derived samples as an example for point-of-care application.
  •  
4.
  • Berto, Marcello, et al. (författare)
  • EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids
  • 2018
  • Ingår i: ADVANCED BIOSYSTEMS. - : WILEY-V C H VERLAG GMBH. - 2366-7478. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electronic transistors are rapidly emerging as ultrahigh sensitive label-free biosensors suited for point-of-care or in-field deployed applications. Most organic biosensors reported to date are based on immunorecognition between the relevant biomarkers and the immobilized antibodies, whose use is hindered by large dimensions, poor control of sequence, and relative instability. Here, an electrolyte-gated organic field effect transistor (EGOFET) biosensor where the recognition units are surface immobilized peptide aptamers (Affimer proteins) instead of antibodies is reported. Peptide aptasensor for the detection of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha) with a 1 x 10(-12) M limit of detection is demonstrated. Ultralow sensitivity is met even in complex solutions such as cell culture media containing 10% serum, demonstrating the remarkable ligand specificity of the device. The device performances, together with the simple one-step immobilization strategy of the recognition moieties and the low operational voltages, all prompt EGOFET peptide aptasensors as candidates for early diagnostics and monitoring at the point-of-care.
  •  
5.
  • Burtscher, Bernhard, et al. (författare)
  • Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors
  • 2021
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 10:20
  • Forskningsöversikt (refereegranskat)abstract
    • An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the fields state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.
  •  
6.
  • Cajander, Sara, 1980-, et al. (författare)
  • Profiling the dysregulated immune response in sepsis : overcoming challenges to achieve the goal of precision medicine
  • 2024
  • Ingår i: The Lancet Respiratory Medicine. - : Elsevier. - 2213-2600 .- 2213-2619. ; 12:4, s. 305-322
  • Forskningsöversikt (refereegranskat)abstract
    • Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
  •  
7.
  • Osuchowski, Marcin F., et al. (författare)
  • The COVID-19 puzzle : deciphering pathophysiology and phenotypes of a new disease entity
  • 2021
  • Ingår i: The Lancet Respiratory Medicine. - : Elsevier. - 2213-2600 .- 2213-2619. ; 9:6, s. 622-642
  • Forskningsöversikt (refereegranskat)abstract
    • The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy