SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Couples Gary) "

Sökning: WFRF:(Couples Gary)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Lewis, Helen, et al. (författare)
  • Interactions Between Imbibition and Pressure-Driven Flow in a Microporous Deformed Limestone
  • 2023
  • Ingår i: Transport in Porous Media. - : Springer Science and Business Media LLC. - 0169-3913 .- 1573-1634. ; 146:3, s. 559-585
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron imaging is used for direct observation of evolving water–air and deuterated water–normal water exchanges in flow experiments performed on a laboratory-deformed, microporous laminated limestone, an extremely fine-textured rock altered by arrays of superposed fractures generated in a rock mechanics apparatus. The neutron images document significant, evolving, water speed and flow direction variability at the deci-micron scale and spatially complex patterns of both increasing and decreasing water saturation. We infer that capillarity-driven and pressure-driven water movement occurs concurrently, in close proximity and in competition, and that as local and global water saturations evolve these two drivers can change their dominance in both matrix and deformed elements. Thin sections are used to obtain sub-micron resolution SEM images that provide multi-scale information on the textural features’ spatial arrangements. The textural characteristics are consistent with the inferences made from the coarser flow imaging. Alternating lamina types provide the primary lithological heterogeneity, while the experimentally created deformations lead to quasi-planar zones of highly comminuted matrix and fracture-like voids, each with lengths ranging from sub-mm to cm. Together deformation features delineate a partially connected array. The interplay between fluid movement through deformation features, and flow into (and out of) the laminae, implies near-equivalence of local driving pressure- and capillary-related energies, with subtle shifts in this balance as water saturation increases. The insights gained invite a re-examination of common rules-of-thumb for multi-phase fluid flow often adopted in fractured, low-permeability microporous rocks.
  •  
4.
  • Tudisco, Erika, et al. (författare)
  • Fast 4‐D Imaging of Fluid Flow in Rock by High‐Speed Neutron Tomography
  • 2019
  • Ingår i: Journal of Geophysical Research: Solid Earth. - 2169-9313. ; 124:4, s. 3557-3569
  • Tidskriftsartikel (refereegranskat)abstract
    • High‐speed neutron tomographies (1‐min acquisition) have been acquired during water invasion into air‐filled samples of both intact and deformed (ex situ) Vosges sandstone. Three‐dimensional volume images have been processed to detect and track the evolution of the waterfront and to calculate full‐field measurement of its speed of advance. The flow process correlates well with known rock properties and is especially sensitive to the distribution of the altered properties associated with observed localized deformation, which is independently characterized by Digital Volume Correlation of X‐ray tomographies acquired before and after the mechanical test. The successful results presented herein open the possibility of in situ analysis of the local evolution of hydraulic properties of rocks due to mechanical deformation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy