SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Crocker J.) "

Sökning: WFRF:(Crocker J.)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Thoma, B, et al. (författare)
  • An international, interprofessional investigation of the self-reported podcast listening habits of emergency clinicians: A METRIQ Study
  • 2020
  • Ingår i: CJEM. - : Springer Science and Business Media LLC. - 1481-8043 .- 1481-8035. ; 22:1, s. 112-117
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesPodcasts are increasingly being used for medical education. A deeper understanding of usage patterns would inform both producers and researchers of medical podcasts. We aimed to determine how and why podcasts are used by emergency medicine and critical care clinicians.MethodsAn international interprofessional sample (medical students, residents, physicians, nurses, physician assistants, and paramedics) was recruited through direct contact and a multimodal social media (Twitter and Facebook) campaign. Each participant completed a survey outlining how and why they utilize medical podcasts. Recruitment materials included an infographic and study website.Results390 participants from 33 countries and 4 professions (medicine, nursing, paramedicine, physician assistant) completed the survey. Participants most frequently listened to medical podcasts to review new literature (75.8%), learn core material (75.1%), and refresh memory (71.8%). The majority (62.6%) were aware of the ability to listen at increased speeds, but most (76.9%) listened at 1.0 x (normal) speed. All but 25 (6.4%) participants concurrently performed other tasks while listening. Driving (72.3%), exercising (39.7%), and completing chores (39.2%) were the most common. A minority of participants used active learning techniques such as pausing, rewinding, and replaying segments of the podcast. Very few listened to podcasts multiple times.ConclusionsAn international cohort of emergency clinicians use medical podcasts predominantly for learning. Their listening habits (rarely employing active learning strategies and frequently performing concurrent tasks) may not support this goal. Further exploration of the impact of these activities on learning from podcasts is warranted.
  •  
3.
  • Kirk, A., et al. (författare)
  • Overview of recent physics results from MAST
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n > 1 has been shown to be important for plasma performance.
  •  
4.
  • Chapman, I. T., et al. (författare)
  • Overview of MAST results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mega Ampere Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number n(RMP) = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating n(RMP) = 3 RMPs. n(RMP) = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with n(RMP) = 4 than n(RMP) = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L-H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with 'classical' fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W-1) has been achieved in solenoid-free start-up. A new proton detector has characterized escaping fusion products. Langmuir probes and a high-speed camera suggest filaments play a role in particle transport in the private flux region whilst coherence imaging has measured scrape-off layer (SOL) flows. BOUT++ simulations show that fluxes due to filaments are strongly dependent on resistivity and magnetic geometry of the SOL, with higher radial fluxes at higher resistivity. Finally, MAST Upgrade is due to begin operation in 2016 to support ITER preparation and importantly to operate with a Super-X divertor to test extended leg concepts for particle and power exhaust.
  •  
5.
  •  
6.
  • Szymanski, J. J., et al. (författare)
  • MEGA : A search for the decay mu –> e gamma
  • 1994
  • Ingår i: Intersections between particle and nuclear physics. Proceedings, 5th Conference, St. Petersburg, USA, May 31-June 6, 1994. ; , s. 789-792
  • Konferensbidrag (refereegranskat)
  •  
7.
  • Amann, F., et al. (författare)
  • A search for murarregamma at the level of 10-13
  • 1991
  • Ingår i: Proceedings of the 25th International Conference on High Energy Physics. - 9810024347 ; , s. 1070-1071
  • Konferensbidrag (refereegranskat)abstract
    • The MEGA experiment, which is a search for the decay murarregamma with a branching ratio sensitivity of about 10-13, employs highly modular, fast detectors, state-of-the-art electronics, and a staged trigger with on-line filters. The detectors are contained in a 1.5-T solenoidal field produced by a superconducting magnet. Positrons are confined to the central region and are measured by a set of thin MWPCs. Photons are measured by one of four layers of pair spectrometers in the outer region. Most aspects of the design have been validated in engineering runs; data taking will begin in 1990 with much of the electron arm and one pair spectrometer layer installed.
  •  
8.
  • Ahmed, M., et al. (författare)
  • Search for the lepton-family-number nonconserving decay μ +→e +γ
  • 2002
  • Ingår i: Physical Review D. - : American Physical Society. - 1550-7998 .- 1550-2368. ; 65:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The MEGA experiment, which searched for the muon- and electron-number violating decay μ +→e + γ, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio, B(μ + →e + γ)<1.2×10 -11 with 90% confidence, is derived from a likelihood analysis.
  •  
9.
  • Shirer, K. R., et al. (författare)
  • Nuclear magnetic resonance studies of pseudospin fluctuations in URu2Si2
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 88:9, s. 094436-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Si-29 nuclear magnetic resonance measurements in single crystals and aligned powders of URu2Si2 in the hidden order and paramagnetic phases. The spin-lattice relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic phase. We find evidence for partial suppression of the density of states below 30 K and analyze the data in terms of a two-component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden-order transition T-HO and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order.
  •  
10.
  • Bax, Marieke, et al. (författare)
  • Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins
  • 2007
  • Ingår i: Journal of Immunology. - 1550-6606. ; 179:12, s. 8216-8224
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic reprogramming. Glycosylation is the most common form of posttranslational modification of proteins and has been implicated in multiple aspects of the immune response. To investigate the involvement of glycosylation in the changes that occur during DC maturation, we have studied the differences in the glycan profile of iDC and mDC as well as their glycosylation machinery. For information relating to glycan biosynthesis, gene expression profiles of human monocyte-derived iDC and mDC were compared using a gene microarray and quantitative real-time PCR. This gene expression profiling showed a profound maturation-induced up-regulation of the glycosyltransferases involved in the expression of LacNAc, core 1 and sialylated structures and a down-regulation of genes involved in the synthesis of core 2 O-glycans. Glycosylation changes during DC maturation were corroborated by mass spectrometric analysis of N- and O-glycans and by flow cytometry using plant lectins and glycan-specific Abs. Interestingly, the binding of the LacNAc-specific lectins galectin-3 and -8 increased during maturation and up-regulation of sialic acid expression by mDC correlated with an increased binding of siglec-1, -2, and -7.
  •  
11.
  •  
12.
  • Rivero-Rodriguez, J. F., et al. (författare)
  • Overview of fast particle experiments in the first MAST Upgrade experimental campaigns
  • 2024
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 64:8
  • Tidskriftsartikel (refereegranskat)abstract
    • MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfvénic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in burning plasmas. The MeV range D-D fusion product ions are also produced but are not confined. Simulations with the ASCOT code show that up to 20% of fast ions produced by NBI can be lost due to charge exchange (CX) with edge neutrals. Dedicated experiments employing low field side (LFS) gas fuelling show a significant drop in the measured neutron fluxes resulting from beam-plasma reactions, providing additional evidence of CX-induced fast-ion losses, similar to the ASCOT findings. Clear evidence of fast-ion redistribution and loss due to sawteeth (ST), fishbones (FB), long-lived modes (LLM), Toroidal Alfvén Eigenmodes (TAE), Edge Localised Modes (ELM) and neoclassical tearing modes (NTM) has been found in measurements with a Neutron Camera (NCU), a scintillator-based Fast-Ion Loss Detector (FILD), a Solid-State Neutral Particle Analyser (SSNPA) and a Fast-Ion Deuterium-α (FIDA) spectrometer. Unprecedented FILD measurements in the range of 1-2 MHz indicate that fast-ion losses can be also induced by the beam ion cyclotron resonance interaction with compressional or global Alfvén eigenmodes (CAEs or GAEs). These results show the wide variety of scenarios and the unique conditions in which fast ions can be studied in MAST-U, under conditions that are relevant for future devices like STEP or ITER.
  •  
13.
  •  
14.
  • Bard, Delphine, et al. (författare)
  • Reflection and transmission properties of wooden wall/floor building elements
  • 2011
  • Ingår i: 18th International Congress on Sound and Vibration 2011, ICSV 2011. - 9781618392596 ; 2, s. 1065-1072
  • Konferensbidrag (refereegranskat)abstract
    • Various modal methods are frequently used to investigate the vibration pattern in construction elements of a building in the low frequency range. The experimental determination of time average transmission and reflection coefficient has been developed for the large scale building structures. In this study, we investigate a mock up of a wall/floor junction. The wave approach is combined with the continuity equation. In this fashion both the flexural wave propagation and the in-plane wave motion can be captured. The miss-match impedance was also an important factor, since there is a change of material in the junction. The goal of using scattering matrix formulation is to separate the transmitted wave and the reflected wave as the structural wave propagates towards a wall/floor junction, but also to calculate the rate of wave conversion. One type of junction has been studied with the help of accelerometer matrices: the T junction of the floor/wall structure with its reinforcement beams.
  •  
15.
  • Du, X. D., et al. (författare)
  • Multiscale Chirping Modes Driven by Thermal Ions in a Plasma with Reactor-Relevant Ion Temperature
  • 2021
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 127:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvenic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in similar to 0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature greater than or similar to 10 keV and high-beta plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfven continuum caused by the compressibility of ions with reactor-relevant ion temperature.
  •  
16.
  • Gaudry, Michael J., 1990-, et al. (författare)
  • Terrestrial Birth and Body Size Tune UCP1 Functionality in Seals
  • 2024
  • Ingår i: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 41:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.
  •  
17.
  • Walter, C. W., et al. (författare)
  • Candidate for Laser Cooling of a Negative Ion: Observations of Bound-Bound Transitions in La
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007. ; 113:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the tremendous advances in laser cooling of neutral atoms and positive ions, no negatively charged ion has been directly laser cooled. The negative ion of lanthanum, La-, has been proposed as the best candidate for laser cooling of any atomic anion [S. M. O'Malley and D. R. Beck, Phys. Rev. A 81, 032503 (2010)]. Tunable infrared laser photodetachment spectroscopy is used to measure the bound-state structure of La-, revealing a spectrum of unprecedented richness with multiple bound-bound electric dipole transitions. The potential laser-cooling transition (3F(2)(e) -> D-3(1)0) is identified and its excitation energy is measured. The results confirm that La- is a very promising negative ion for laser-cooling applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy