SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cutz Luis 1986) "

Sökning: WFRF:(Cutz Luis 1986)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cutz, Luis, 1986, et al. (författare)
  • Assessment of biomass energy sources and technologies: The case of Central America
  • 2016
  • Ingår i: Renewable and Sustainable Energy Reviews. - : Elsevier BV. - 1879-0690 .- 1364-0321. ; 58, s. 1411-1431
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reviews and assesses conditions for increased and efficient use of biomass in Central America (CA), providing an overview of conditions for biomass supply in each country. Then, a Fuzzy Multi-Actor Multi-Criteria Decision-Making (MCDM) method is applied to identify a portfolio of biomass conversion technologies appropriate for CA, considering technical, economic, environmental and socio-political aspects. The work is motivated by the relatively large availability of biomass in CA at the same time as current conversion of biomass is carried out in inefficient processes. The assessment of technologies includes thermochemical processes (pyrolysis, combustion and gasification) for production of different energy carriers, including improved cooking stoves (ICSs). The most promising biomass feedstocks in the region are residue based; animal (manure), forest and agricultural origin. We show that around 250 PJ/year could be available for the energy sector, which is equivalent to 34% of primary energy supply for CA. It is concluded that in the short term promoting and implementing ICSs will give the largest improvement in the efficiency of biomass use, whereas on the long term small combustion plants seem to be the best choice for transforming CA's biomass into a clean and sustainable energy carriers, boosting economy and industrial development. Results show that the introduction of ICSs will result in an annual saving in the range of 4-8 Mt of fuelwood (59-113 PJ). Moreover, even when the investment cost of the cooking stoves is considered, ICSs yield economic savings to fuelwood consumers compared to traditional stoves. The total savings during the first year of implementation would be in the range of 19-152 US$/stove. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
2.
  • Cintas Sanchez, Olivia, 1982, et al. (författare)
  • Geospatial supply-demand modeling of biomass residues for co-firing in European coal power plants
  • 2018
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 10:11, s. 786-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass co‐firing with coal is a near‐term option to displace fossil fuels and can facilitate development of biomass conversion and the build‐out of biomass supply infrastructure. A GIS‐based modeling framework (EU‐28, Norway, and Switzerland) is used to quantify and localize biomass demand for co‐firing in coal power plants and agricultural and forest residue supply potentials; supply and demand are then matched based on minimizing the total biomass transport costs (field‐to‐gate). Key datasets (e.g., land cover, land use, wood production) are available at 1,000 m or higher resolution, while some data (e.g., simulated yields) and assumptions (e.g., crop harvest index) have lower resolution and were re‐sampled to allow modeling at 1,000 m resolution. Biomass demand for co‐firing is estimated at 184 PJ in 2020, corresponding to an emissions reduction of 18 Mt CO2. In all countries except Italy and Spain, the sum of the forest and agricultural residues available at less than 300 km from a co‐firing plant exceeds the assessed biomass demand. The total cost of transporting residues to these plants is reduced if agricultural residues can be used, since transport distances are shorter. The total volume of forest residues less than 300 km from a co‐firing plant corresponds to about half of the assessed biomass demand. Almost 70% of the total biomass demand for co‐firing is found in Germany and Poland. The volumes of domestic forest residues in Germany (Poland) available within the cost range 2‐5 (1.5‐3.5) €/GJ biomass correspond to about 30% (70%) of the biomass demand. The volumes of domestic forest and agricultural residues in Germany (Poland) within the cost range 2‐4 (below 2) €/GJ biomass exceed the biomass demand for co‐firing. Half of the biomass demand is located within 50 km from ports, indicating that long‐distance biomass transport by sea is in many instances an option.
  •  
3.
  • Cutz, Luis, 1986, et al. (författare)
  • A techno-economic assessment of biomass co-firing in Czech Republic, France, Germany and Poland
  • 2019
  • Ingår i: Biofuels, Bioproducts and Biorefining. - : Wiley. - 1932-1031 .- 1932-104X. ; 13:5, s. 1289-1305
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass co-firing with coal can help to reduce greenhouse gas emissions and can act as a low-cost stepping-stone for developing biomass supply infrastructures. This paper presents a techno-economic assessment of the biomass co-firing potential in coal-fired boilers in Czech Republic, France, Germany and Poland. The current coal power plant infrastructure is characterized by means of geographic location of the coal power plants, installed boiler capacity, type of boiler technology and year of commissioning, as extracted from the Chalmers Power Plant Database. The assessment considers type of boiler technology, type of biomass, co-firing fraction, implementation costs, breakeven prices for co-firing and an alkali index to determine the risk of high-temperature corrosion. The main factors affecting the co-firing potential are the biomass price, carbon price and alkali index. Results indicate that the total co-firing potential in the four countries is around 16 TWh year−1, with the largest potential from a conversion perspective in Germany, followed by Poland. Biomass co-firing with coal is estimated to be competitive at biomass prices below 13 € MWhinput−1 when the carbon price is 20 € t−1 CO2. On average, 1 TWh of electricity from biomass co-firing substitutes 0.9 Mt of fossil CO2 emissions. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy