SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Czeiter Endre) "

Sökning: WFRF:(Czeiter Endre)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martens-Lobenhoffer, Jens, et al. (författare)
  • Determination of cerebrospinal fluid concentrations of arginine and dimethylarginines in patients with subarachnoid haemorrhage
  • 2007
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier. - 0165-0270 .- 1872-678X. ; 164:1, s. 155-160
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated cerebrospinal fluid (CSF) concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), are assumed to be related to delayed vasospasm after subarachnoid haemorrhage (SAH). However, data on CSF concentrations of L-arginine, ADMA and its structural isomer symmetric dimethylarginine (SDMA) are very sparse in humans. We here present a new hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS-MS) method for the precise determination of these substances in CSF. The method requires only minimal sample preparation and features isotope labeled internal standards. First data of patients with SAH showed that on the day of admission CSF concentration values of L-arginine and ADMA were not significantly different from controls, but increased markedly during the course of the hospital stay. The decrease of the L-arginine to ADMA ratio points to a progressive impairment of the NO production rate in the brain after SAH which is confirmed by a simultaneous decrease in nitrate and nitrite concentrations in CSF. 
  •  
2.
  • Auer, Tibor, et al. (författare)
  • SÚLYOS KOPONYA-AGY SÉRÜLÉS VIZSGÁLATADIFFÚZIÓS TENZOR ÉS FUNKCIONÁLISMR-KÉPALKOTÁSSAL ALACSONY TÉRERÔN : [Diffusion tensor and functional MR imaging of severe traumatic craniocerebral injury at low magnetic field]
  • 2007
  • Ingår i: Ideggyogyaszati Szemle. - : Literatura Medica Kiado. - 0019-1442 .- 2498-6208. ; 60:11-12, s. 480-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim of the study: Presentation of diffusion tensor imaging (DTI) performed at low magnetic field (1 Tesla) in the algorithm of work-up of a patient suffering from severe traumatic brain injury (TBI).Method: DTI and functional MRI (fMRI) were applied at 1 Tesla for visualization of neural pathways and examination of sensory functions of a patient with severe TBI. DTI-measurement was also performed on a healthy patient for comparison.Results: DTI acquired at low magnetic field yielded appropriate visualization of neural pathways. DTI confirmed the results of the clinical and fMRI examinations in the patient suffering from severe TBI.Conclusion: An optimized DTI can be useful in the examination of patients with TBI, moreover, it may also help in the establishment of diagnoses of other central nervous system diseases affecting neuronal pathways. The presented results suggest that DTI of appropriate quality can be performed at low magnetic field.
  •  
3.
  • Büki, Andras, 1966-, et al. (författare)
  • Clinical and model research of neurotrauma
  • 2009
  • Ingår i: Methods in Molecular Biology. - Totowa, NJ : Humana Press. - 1064-3745 .- 1940-6029. ; 566, s. 41-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling traumatic brain injury represents a major challenge for neuroscientists - to represent extremely complex pathobiological processes kept under close surveillance in the most complex organ of a laboratory animal. To ensure that such models also reflect those alterations evoked by and/or associated with traumatic brain injury (TBI) in man, well-defined, graded, simple injury paradigms should be used with clear endpoints that also enable us to assess the relevance of our findings to human observations. It is of particular importance that our endpoints should harbor clinical significance, and to this end, biological markers ultimately associated with the pathological processes operant in TBI are considered the best candidate. This chapter provides protocols for relevant experimental models of TBI and clinical materials for neuroproteomic analysis. 
  •  
4.
  • Büki, Andras, 1966-, et al. (författare)
  • Minor and repetitive head injury
  • 2014
  • Ingår i: Advances and Technical Standards in Neurosurgery. - Cham : Springer. - 9783319090658 - 9783319090665 ; , s. 147-192
  • Bokkapitel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is the leading cause of death and disability in the young, active population and expected to be the third leading cause of death in the whole world until 2020. The disease is frequently referred to as the silent epidemic, and many authors highlight the "unmet medical need" associated with TBI.The term traumatically evoked brain injury covers a heterogeneous group ranging from mild/minor/minimal to severe/non-salvageable damages. Severe TBI has long been recognized to be a major socioeconomical health-care issue as saving young lives and sometimes entirely restituting health with a timely intervention can indeed be extremely cost efficient.Recently it has been recognized that mild or minor TBI should be considered similarly important because of the magnitude of the patient population affected. Other reasons behind this recognition are the association of mild head injury with transient cognitive disturbances as well as long-term sequelae primarily linked to repeat (sport-related) injuries.The incidence of TBI in developed countries can be as high as 2-300/100,000 inhabitants; however, if we consider the injury pyramid, it turns out that severe and moderate TBI represents only 25-30 % of all cases, while the overwhelming majority of TBI cases consists of mild head injury. On top of that, or at the base of the pyramid, are the cases that never show up at the ER - the unreported injuries.Special attention is turned to mild TBI as in recent military conflicts it is recognized as "signature injury."This chapter aims to summarize the most important features of mild and repetitive traumatic brain injury providing definitions, stratifications, and triage options while also focusing on contemporary knowledge gathered by imaging and biomarker research.Mild traumatic brain injury is an enigmatic lesion; the classification, significance, and its consequences are all far less defined and explored than in more severe forms of brain injury.Understanding the pathobiology and pathomechanisms may aid a more targeted approach in triage as well as selection of cases with possible late complications while also identifying the target patient population where preventive measures and therapeutic tools should be applied in an attempt to avoid secondary brain injury and late complications. 
  •  
5.
  • Bukovics, Peter, et al. (författare)
  • Changes of PACAP level in cerebrospinal fluid and plasma of patients with severe traumatic brain injury
  • 2014
  • Ingår i: Peptides. - : Elsevier. - 0196-9781 .- 1873-5169. ; 60, s. 18-22
  • Tidskriftsartikel (refereegranskat)abstract
    • PACAP has well-known neuroprotective potential including traumatic brain injury (TBI). Its level is up-regulated following various insults of the CNS in animal models. A few studies have documented alterations of PACAP levels in human serum. The time course of post-ictal PACAP levels, for example, show correlation with migraine severity. Very little is known about the course of PACAP levels following CNS injury in humans and the presence of PACAP has not yet been detected in cerebrospinal fluid (CSF) of subjects with severe TBI (sTBI). The aim of the present study was to determine whether PACAP occurs in the CSF and plasma (Pl) of patients that suffered sTBI and to establish a time course of PACAP levels in the CSF and Pl. Thirty eight subjects with sTBI were enrolled with a Glasgow Coma Scale ≤8 on admission. Samples were taken daily, until the time of death or for maximum 10 days. Our results demonstrated that PACAP was detectable in the CSF, with higher concentrations in patients with TBI. PACAP concentrations markedly increased in both Pl and CSF in the majority of patients 24-48h after the injury stayed high thereafter. In cases of surviving patients, Pl and CSF levels displayed parallel patterns, which may imply the damage of the blood-brain barrier. However, in patients, who died within the first week, Pl levels were markedly higher than CSF levels, possibly indicating the prognostic value of high Pl PACAP levels. 
  •  
6.
  • Czeiter, Endre, et al. (författare)
  • Blood biomarkers on admission in acute traumatic brain injury : Relations to severity, CT findings and care path in the CENTER-TBI study
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 56
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Serum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities.METHODS: We analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained <24 h post-injury from 2867 patients with any severity of TBI in the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) Core Study, a prospective, multicenter, cohort study. Univariable and multivariable logistic regression analyses were performed. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals.FINDINGS: All biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87-0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83-0•86] to 0•89 [95%CI: 0•87-0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone.INTERPRETATION: Currently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required.FUNDING: CENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).
  •  
7.
  • Czeiter, Endre, et al. (författare)
  • Brain Injury Biomarkers May Improve the Predictive Power of the IMPACT Outcome Calculator
  • 2012
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 29:9, s. 1770-1778
  • Tidskriftsartikel (refereegranskat)abstract
    • Outcome prediction following severe traumatic brain injury (sTBI) is a widely investigated field of research. A major breakthrough is represented by the IMPACT prognostic calculator based on admission data of more than 8500 patients. A growing body of scientific evidence has shown that clinically meaningful biomarkers, including glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and alpha II-spectrin breakdown product (SBDP145), could also contribute to outcome prediction. The present study was initiated to assess whether the addition of biomarkers to the IMPACT prognostic calculator could improve its predictive power. Forty-five sTBI patients (GCS score <= 8) from four different sites were investigated. We utilized the core model of the IMPACT calculator (age, GCS motor score, and reaction of pupils), and measured the level of GFAP, UCH-L1, and SBDP145 in serum and cerebrospinal fluid (CSF). The forecast and actual 6-month outcomes were compared by logistic regression analysis. The results of the core model itself, as well as serum values of GFAP and CSF levels of SBDP145, showed a significant correlation with the 6-month mortality using a univariate analysis. In the core model, the Nagelkerke R-2 value was 0.214. With multivariate analysis we were able to increase this predictive power with one additional biomarker (GFAP in CSF) to R-2 = 0.476, while the application of three biomarker levels (GFAP in CSF, GFAP in serum, and SBDP145 in CSF) increased the Nagelkerke R-2 to 0.700. Our preliminary results underline the importance of biomarkers in outcome prediction, and encourage further investigation to expand the predictive power of contemporary outcome calculators and prognostic models in TBI.
  •  
8.
  • Czeiter, Endre, et al. (författare)
  • Calpain inhibition reduces axolemmal leakage in traumatic axonal injury
  • 2009
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 14:12, s. 5115-5123
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium-induced, calpain-mediated proteolysis (CMSP) has recently been implicated to the pathogenesis of diffuse (traumatic) axonal injury (TAI). Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP) alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA) and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA) was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor) or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI. 
  •  
9.
  • Czeiter, Endre, et al. (författare)
  • Traumatic axonal injury in the spinal cord evoked by traumatic brain injury
  • 2008
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 25:3, s. 205-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is well known that traumatic brain injury (TBI) evokes traumatic axonal injury (TAI) within the brain, TBI-induced axonal damage in the spinal cord (SC) has been less extensively investigated. Detection of such axonal injury in the spinal cord would further the complexity of TBI while also challenging some functional neurobehavioral endpoints frequently used to assess recovery in various models of TBI. To assess TAI in the spinal cord associated with TBI, we analyzed the craniocervical junction (CCJ), cervico-thoracic (CT), and thoraco-lumber (ThL) spinal cord in a rodent model of impact acceleration of TBI of varying severities. Rats were transcardially fixed with aldehydes at 2, 6, and 24 h post-injury (n = 36); each group included on sham-injured rodent. Semi-serial vibratome sections were reacted with antibodies targeting TAI via alteration in cytoskeletal integrity or impaired axonal transport. Consistent with previous observations in this model, the CCJ contained numerous injured axons. Immunoreactive, damaged axonal profiles were also detected as caudal, as the ThL spinal cord displayed morphological characteristics entirely consistent with those described in the brainstem and the CCJ. Quantitative analyses demonstrated that the occurrence and extent of TAI is positively associated with the impact/energy of injury and negatively with the distance from the brainstem. These observations show that TBI can evoke TAI in regions remote from the injury site, including the spinal cord itself. This finding is relevant to shaken baby syndrome as well as during the analysis of data in functional recovery in various models of TBI. 
  •  
10.
  • Czigler, Andras, et al. (författare)
  • Hypertension exacerbates cerebrovascular oxidative stress induced by mild traumatic brain injury : Protective effects of the Mitochondria-Targeted Antioxidative Peptide SS-31
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 36:23, s. 3309-3315
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) induces cerebrovascular oxidative stress, which is associated with neurovascular uncoupling, autoregulatory dysfunction, and persisting cognitive decline in both pre-clinical models and patients. However, single mild TBI (mTBI), the most frequent form of brain trauma, increases cerebral generation of reactive oxygen species (ROS) only transiently. We hypothesized that comorbid conditions might exacerbate long-term ROS generation in cerebral arteries after mTBI. Because hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive and spontaneously hypertensive rats (SHR) and assessed changes in cytoplasmic and mitochondrial superoxide (O2-) production by confocal microscopy in isolated middle cerebral arteries (MCA) 2 weeks after mTBI using dihydroethidine (DHE) and the mitochondria-targeted redox-sensitive fluorescent indicator dye MitoSox. We found that mTBI induced a significant increase in long-term cytoplasmic and mitochondrial O2- production in MCAs of SHRs and increased expression of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit Nox4, which were reversed to the normal level by treating the animals with the cell-permeable, mitochondria-targeted antioxidant peptide SS-31 (5.7 mg kg-1 day-1, i.p.). Persistent mTBI-induced oxidative stress in MCAs of SHRs was significantly decreased by inhibiting vascular NADPH oxidase (apocyinin). We propose that hypertension- and mTBI-induced cerebrovascular oxidative stress likely lead to persistent dysregulation of cerebral blood flow (CBF) and cognitive dysfunction, which might be reversed by SS-31 treatment. 
  •  
11.
  • Helmrich, Isabel R. A. Retel, et al. (författare)
  • Incremental prognostic value of acute serum biomarkers for functional outcome after traumatic brain injury (CENTER-TBI) : an observational cohort study
  • 2022
  • Ingår i: Lancet Neurology. - : The Lancet Publishing Group. - 1474-4422 .- 1474-4465. ; 21:9, s. 792-802
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Several studies have reported an association between serum biomarker values and functional outcome following traumatic brain injury. We aimed to examine the incremental (added) prognostic value of serum biomarkers over demographic, clinical, and radiological characteristics and over established prognostic models, such as IMPACT and CRASH, for prediction of functional outcome.METHODS: We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core study. We included patients aged 14 years or older who had blood sampling within 24 h of injury, results from a CT scan, and outcome assessment according to the Glasgow Outcome Scale-Extended (GOSE) at 6 months. Amounts in serum of six biomarkers (S100 calcium-binding protein B, neuron-specific enolase, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 [UCH-L1], neurofilament protein-light, and total tau) were measured. The incremental prognostic value of these biomarkers was determined separately and in combination. The primary outcome was the GOSE 6 months after injury. Incremental prognostic value, using proportional odds and a dichotomised analysis, was assessed by delta C-statistic and delta R2 between models with and without serum biomarkers, corrected for optimism with a bootstrapping procedure.FINDINGS: Serum biomarker values and 6-month GOSE were available for 2283 of 4509 patients. Higher biomarker levels were associated with worse outcome. Adding biomarkers improved the C-statistic by 0·014 (95% CI 0·009-0·020) and R2 by 4·9% (3·6-6·5) for predicting GOSE compared with demographic, clinical, and radiological characteristics. UCH-L1 had the greatest incremental prognostic value. Adding biomarkers to established prognostic models resulted in a relative increase in R2 of 48-65% for IMPACT and 30-34% for CRASH prognostic models.INTERPRETATION: Serum biomarkers have incremental prognostic value for functional outcome after traumatic brain injury. Our findings support integration of biomarkers-particularly UCH-L1-in established prognostic models.
  •  
12.
  • Hossain, Iftakher, et al. (författare)
  • Blood biomarkers for traumatic brain injury : A narrative review of current evidence
  • 2024
  • Ingår i: Brain and Spine. - : Elsevier. - 2772-5294. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care.Research question: What evidence is available for clinical applications of BBBMs in TBI and how to advance this field?Material and methods: This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination.Results: Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit.Discussion and conclusion: Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
  •  
13.
  • Kovács-Öller, Tamás, et al. (författare)
  • Traumatic Brain Injury Induces Microglial and Caspase3 Activation in the Retina
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is among the main causes of sudden death after head trauma. These injuries can result in severe degeneration and neuronal cell death in the CNS, including the retina, which is a crucial part of the brain responsible for perceiving and transmitting visual information. The long-term effects of mild-repetitive TBI (rmTBI) are far less studied thus far, even though damage induced by repetitive injuries occurring in the brain is more common, especially amongst athletes. rmTBI can also have a detrimental effect on the retina and the pathophysiology of these injuries is likely to differ from severe TBI (sTBI) retinal injury. Here, we show how rmTBI and sTBI can differentially affect the retina. Our results indicate an increase in the number of activated microglial cells and Caspase3-positive cells in the retina in both traumatic models, suggesting a rise in the level of inflammation and cell death after TBI. The pattern of microglial activation appears distributed and widespread but differs amongst the various retinal layers. sTBI induced microglial activation in both the superficial and deep retinal layers. In contrast to sTBI, no significant change occurred following the repetitive mild injury in the superficial layer, only the deep layer (spanning from the inner nuclear layer to the outer plexiform layer) shows microglial activation. This difference suggests that alternate response mechanisms play a role in the case of the different TBI incidents. The Caspase3 activation pattern showed a uniform increase in both the superficial and deep layers of the retina. This suggests a different action in the course of the disease in sTBI and rmTBI models and points to the need for new diagnostic procedures. Our present results suggest that the retina might serve as such a model of head injuries since the retinal tissue reacts to both forms of TBI and is the most accessible part of the human brain.
  •  
14.
  • Kövesdi, Erzsébet, et al. (författare)
  • Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics
  • 2010
  • Ingår i: Acta Neurochirurgica. - : Springer. - 0001-6268 .- 0942-0940. ; 152:1, s. 1-17
  • Forskningsöversikt (refereegranskat)abstract
    • Purpose: This review summarizes protein biomarkers in mild and severe traumatic brain injury in adults and children and presents a strategy for conducting rationally designed clinical studies on biomarkers in head trauma.Methods: We performed an electronic search of the National Library of Medicine's MEDLINE and Biomedical Library of University of Pennsylvania database in March 2008 using a search heading of traumatic head injury and protein biomarkers. The search was focused especially on protein degradation products (spectrin breakdown product, c-tau, amyloid-beta(1-42)) in the last 10 years, but recent data on "classical" markers (S-100B, neuron-specific enolase, etc.) were also examined.Results: We identified 85 articles focusing on clinical use of biomarkers; 58 articles were prospective cohort studies with injury and/or outcome assessment.Conclusions: We conclude that only S-100B in severe traumatic brain injury has consistently demonstrated the ability to predict injury and outcome in adults. The number of studies with protein degradation products is insufficient especially in the pediatric care. Cohort studies with well-defined end points and further neuroproteomic search for biomarkers in mild injury should be triggered. After critically reviewing the study designs, we found that large homogenous patient populations, consistent injury, and outcome measures prospectively determined cutoff values, and a combined use of different predictors should be considered in future studies.
  •  
15.
  • Lendvai-Emmert, Dominika, et al. (författare)
  • Mild traumatic brain injury-induced persistent blood-brain barrier disruption is prevented by cyclosporine A treatment in hypertension
  • 2023
  • Ingår i: Frontiers in Neurology. - : Frontiers Media S.A.. - 1664-2295. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Mild traumatic brain injury (mTBI) and hypertension synergize to induce persistent disruption of the blood-brain barrier (BBB), neuroinflammation and cognitive decline. However, the underlying mechanisms are not known. Cerebral production of Cyclophilin A (CyPA) is induced in hypertension and after TBI, and it was demonstrated to activate the nuclear factor-κB (NF-kB)- matrix-metalloproteinase-9 (MMP-9) pathway in cerebral vessels leading to BBB disruption.METHODS: To test the role of CyPA in mTBI- and hypertension-induced BBB disruption we induced mTBI in normotensive and spontaneously hypertensive rats (SHR), then the animals were treated with cyclosporine A (a specific inhibitor of CyPA production) or vehicle for 7 days. We assessed BBB permeability and integrity, cerebral expression and activity of the CyPA-NF-kB-MMP-9 pathway, extravasation of fibrin and neuroinflammation.RESULTS: We found that mild TBI induced BBB disruption and upregulation of the CyPA-NF-kB-MMP-9 pathway in hypertension, which were prevented by blocking CyPA. Cyclosporine treatment and preservation of BBB function prevented accumulation of blood-derived fibrin in the brain parenchyma of hypertensive rats after mTBI and reversed increased neuroinflammation.DISCUSSION: We propose that mTBI and hypertension interact to promote BBB disruption via the CyPA-NF-kB-MMP-9 pathway, and inhibition of cyclophilin production after mTBI may exert neuroprotection and improve cognitive function in hypertensive patients.
  •  
16.
  • Lückl, Jááos, et al. (författare)
  • Protein biomarkerek szerepe a koponyasérüles kísérletes modelljeiben és a klinikumban : [Protein biomarkers in experimental models and in clinical care of traumatic brain injury]
  • 2007
  • Ingår i: Ideggyogyaszati Szemle. - : Literatura Medica Kiado. - 0019-1442 .- 2498-6208. ; 60:7-8, s. 284-294
  • Forskningsöversikt (refereegranskat)abstract
    • Traumatic brain injury is the leading cause of mortality in Hungary in the population under 40 years of age. In Western societies, like the United Sates, traumatic brain injury represents an extreme social-economic burden, expected to become the third leading cause of mortality until 2020. Despite its' epidemiological significance, experimental therapeutic modalities developed in the last few decades did not prove efficient in the clinical care of severe traumatic brain injury. The reason for such a lack of success in terms of translating experimental results to clinical treatment at least partially could be explained by the paucity and the low sensitivity and specificity of clinical parameters endowing us to monitor the efficacy of the therapy. The drive for finding clinical parameters and monitoring tools that enable us to monitor treatment efficacy as well as outcome focused recent attention on biomarkers (and) surrogate markers that are based on rational pathological processes associated with/operant in traumatic brain injury. This review summarizes those biomarkers that could purportedly be used to monitor the treatment of the severely head injured while also providing information on salvageability facilitating the conduction of more rationally designed clinical studies. 
  •  
17.
  •  
18.
  • Mondello, Stefania, et al. (författare)
  • Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury : A living systematic review and meta-analysis
  • 2021
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 38:8, s. 1086-1106
  • Forskningsöversikt (refereegranskat)abstract
    • Accurate diagnosis of traumatic brain injury (TBI) is critical to effective management and intervention, but can be challenging in patients with mild TBI. A substantial number of studies have reported the use of circulating biomarkers as signatures for TBI, capable of improving diagnostic accuracy and clinical decision making beyond current practice standards. We performed a systematic review and meta-analysis to comprehensively and critically evaluate the existing body of evidence for the use of blood protein biomarkers (S100 calcium binding protein B [S100B], glial fibrillary acidic protein [GFAP], neuron specific enolase [NSE], ubiquitin C-terminal hydrolase-L1 [UCH-L1]. tau, and neurofilament proteins) for diagnosis of intracranial lesions on CT following mild TBI. Effects of potential confounding factors and differential diagnostic performance of the included markers were explored. Further, appropriateness of study design, analysis, quality, and demonstration of clinical utility were assessed. Studies published up to October 2016 were identified through searches of MEDLINE®, Embase, EBM Reviews, the Cochrane Library, World Health Organization (WHO), International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov. Following screening of the identified articles, 26 were selected as relevant. We found that measurement of S100B can help informed decision making in the emergency department, possibly reducing resource use; however, there is insufficient evidence that any of the other markers is ready for clinical application. Our work pointed out serious problems in the design, analysis, and reporting of many of the studies, and identified substantial heterogeneity and research gaps. These findings emphasize the importance of methodologically rigorous studies focused on a biomarker's intended use, and defining standardized, validated, and reproducible approaches. The living nature of this systematic review, which will summarize key updated information as it becomes available, can inform and guide future implementation of biomarkers in the clinical arena. 
  •  
19.
  • Mondello, Stefania, et al. (författare)
  • Circulating brain injury exosomal proteins following Moderate-to-Severe traumatic brain injury : temporal profile, outcome prediction and therapy implications
  • 2020
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain injury exosomal proteins are promising blood biomarker candidates in traumatic brain injury (TBI). A better understanding of their role in the diagnosis, characterization, and management of TBI is essential for upcoming clinical implementation. In the current investigation, we aimed to explore longitudinal trajectories of brain injury exosomal proteins in blood of patients with moderate-to-severe TBI, and to evaluate the relation with the free-circulating counterpart and patient imaging and clinical parameters. Exosomal levels of glial (glial fibrillary acidic protein (GFAP)) and neuronal/axonal (ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), neurofilament light chain (NFL), and total-tau (t-tau)) proteins were measured in serum of 21 patients for up 5 days after injury using single molecule array (Simoa) technology. Group-based trajectory analysis was used to generate distinct temporal exosomal biomarker profiles. We found altered profiles of serum brain injury exosomal proteins following injury. The dynamics and levels of exosomal and related free-circulating markers, although correlated, showed differences. Patients with diffuse injury displayed higher acute exosomal NFL and GFAP concentrations in serum than those with focal lesions. Exosomal UCH-L1 profile characterized by acutely elevated values and a secondary steep rise was associated with early mortality (n = 2) with a sensitivity and specificity of 100%. Serum brain injury exosomal proteins yielded important diagnostic and prognostic information and represent a novel means to unveil underlying pathophysiology in patients with moderate-to-severe TBI. Our findings support their utility as potential tools to improve patient phenotyping in clinical practice and therapeutic trials.
  •  
20.
  • Mondello, Stefania, et al. (författare)
  • Exploring serum glycome patterns after moderate to severe traumatic brain injury : A prospective pilot study
  • 2022
  • Ingår i: eClinicalMedicine. - : Elsevier. - 2589-5370. ; 50
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycans play essential functional roles in the nervous system and their pathobiological relevance has become increasingly recognized in numerous brain disorders, but not fully explored in traumatic brain injury (TBI). We investigated longitudinal glycome patterns in patients with moderate to severe TBI (Glasgow Coma Scale [GCS] score ≤12) to characterize glyco-biomarker signatures and their relation to clinical features and long-term outcome.Methods: This prospective single-center observational study included 51 adult patients with TBI (GCS ≤12) admitted to the neurosurgical unit of the University Hospital of Pecs, Pecs, Hungary, between June 2018 and April 2019. We used a high-throughput liquid chromatography-tandem mass spectrometry platform to assess serum levels of N-glycans up to 3 days after injury. Outcome was assessed using the Glasgow Outcome Scale-Extended (GOS-E) at 12 months post-injury. Multivariate statistical techniques, including principal component analysis and orthogonal partial least squares discriminant analysis, were used to analyze glycomics data and define highly influential structures driving class distinction. Receiver operating characteristic analyses were used to determine prognostic accuracy.Findings: We identified 94 N-glycans encompassing all typical structural types, including oligomannose, hybrid, and complex-type entities. Levels of high mannose, hybrid and sialylated structures were temporally altered (p<0·05). Four influential glycans were identified. Two brain-specific structures, HexNAc5Hex3DeoxyHex0NeuAc0 and HexNAc5Hex4DeoxyHex0NeuAc1, were substantially increased early after injury in patients with unfavorable outcome (GOS-E≤4) (area under the curve [AUC]=0·75 [95%CI 0·59-0·90] and AUC=0·71 [0·52-0·89], respectively). Serum levels of HexNAc7Hex7DeoxyHex1NeuAc2 and HexNAc8Hex6DeoxyHex0NeuAc0 were persistently increased in patients with favorable outcome, but undetectable in those with unfavorable outcome. Levels of HexNAc5Hex4DeoxyHex0NeuAc1 were acutely elevated in patients with mass lesions and in those requiring decompressive craniectomy.Interpretation: In spite of the exploratory nature of the study and the relatively small number of patients, our results provide to the best of our knowledge initial evidence supporting the utility of glycomics approaches for biomarker discovery and patient phenotyping in TBI. Further larger multicenter studies will be required to validate our findings and to determine their pathobiological value and potential applications in practice.
  •  
21.
  • Mondello, Stefania, et al. (författare)
  • Glial Neuronal Ratio : A Novel Index for Differentiating Injury Type in Patients with Severe Traumatic Brain Injury
  • 2012
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 29:6, s. 1096-1104
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurobiochemical marker levels in blood after traumatic brain injury (TBI) may reflect structural changes detected by neuroimaging. This study evaluates whether correlations between neuronal (ubiquitin carboxyterminal hydrolase-L1 [UCH-L1]) and glial (glial fibrillary acidic protein [GFAP]) biomarkers may be used as an indicator for differing intracranial pathologies after brain trauma. In 59 patients with severe TBI (Glasgow Coma Scale [GCS] score <= 8) serum samples were obtained at the time of hospital admission and analyzed for UCH-L1 and GFAP. Glial neuronal ratio (GNR) was evaluated as the ratio between GFAP and UCH-L1 concentrations. A logistic regression analysis was used to identify variables associated with type of injury. GNR had a median of 0.85 and was positively correlated with age (R = 0.45, p = 0.003). Twenty-nine patients presented with diffuse injury and 30 with focal mass lesions as assessed by CT scan at admission and classified according to the Marshall Classification. GNR was significantly higher in the focal mass lesion group compared with the diffuse injury group (1.77 versus 0.48, respectively; p = 0.003). Receiver operating characteristic curve analysis showed that GNR discriminated between types of injury (area under the curve [AUC] = 0.72; p = 0.003). GNR was more accurate earlier (<= 12 h after injury) than later (AUC = 0.80; p = 0.002). Increased GNR was independently associated with type of injury, but not age, gender, GCS score, or mechanism of injury. GNR was significantly higher in patients who died, but was not an independent predictor of death. The data from the present study indicate that GNR provides valuable information about different injury pathways, which may be of diagnostic significance. In addition, GNR may help to identify different pathophysiological mechanisms following different types of brain trauma, with implications for therapeutic interventions.
  •  
22.
  • Mondello, Stefania, et al. (författare)
  • Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury : a case control study
  • 2011
  • Ingår i: Critical Care. - London : Springer Nature. - 1364-8535 .- 1466-609X. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Authors of several studies have studied biomarkers and computed tomography (CT) findings in the acute phase after severe traumatic brain injury (TBI). However, the correlation between structural damage as assessed by neuroimaging and biomarkers has not been elucidated. The aim of this study was to investigate the relationships among neuronal (Ubiquitin carboxy-terminal hydrolase L1 [UCH-L1]) and glial (glial fibrillary acidic protein [GFAP]) biomarker levels in serum, neuroradiological findings and outcomes after severe TBI.Methods: The study recruited patients from four neurotrauma centers. Serum samples for UCH-L1 and GFAP were obtained at the time of hospital admission and every 6 hours thereafter. CT scans of the brain were obtained within 24hrs of injury. Outcome was assessed by Glasgow Outcome Scale (GOS) at discharge and at 6 months.Results: 81 severe TBI patients and 167 controls were enrolled. The mean serum levels of UCH-L1 and GFAP were higher (p < 0.001) in TBI patients compared to controls. UCH-L1 and GFAP serum levels correlated significantly with Glasgow Coma Scale (GCS) and CT findings. GFAP levels were higher in patients with mass lesions than in those with diffuse injury (2.95 +/- 0.48 ng/ml versus 0.74 +/- 0.11 ng/ml) while UCH-L1 levels were higher in patients with diffuse injury (1.55 +/- 0.18 ng/ml versus 1.21 +/- 0.15 ng/ml, p = 0.0031 and 0.0103, respectively). A multivariate logistic regression showed that UCH-L1 was the only independent predictor of death at discharge [adjusted odds ratios 2.95; 95% confidence interval, 1.46-5.97], but both UCH-L1 and GFAP levels strongly predicted death 6 months post-injury.Conclusions: Relationships between structural changes detected by neuroimaging and biomarkers indicate each biomarker may reflect a different injury pathway. These results suggest that protein biomarkers could provide better characterization of subjects at risk for specific types of cellular damage than that obtained with neuroimaging alone, as well as provide valuable information about injury severity and outcome after severe TBI.
  •  
23.
  • Nemes, Orsolya, et al. (författare)
  • Predictors of post-traumatic pituitary failure during long-term follow-up
  • 2015
  • Ingår i: Hormones - journal of endocrinology and metabolism. - : Hellenic Endocrine Society. - 1109-3099. ; 14:3, s. 383-391
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: There is increasing awareness among physicians of the risks of traumatic brain injury (TBI)-induced hypopituitarism. We have assessed the prevalence and risk factors of post-traumatic hypopituitarism by analyzing the TBI database of the University of Pecs.DESIGN: This consecutive analysis of 126 TBI survivors (mean age: 42.4 years, average follow-up time: 48 months) revealed that 60.3% had severe and 39.7% moderately severe trauma based on GCS score. Subdural hemorrhage (29.3%) and diffuse injury (27%) were the most common types of injury; 17.5% of patients suffered basal skull fractures.RESULTS: The prevalence of major anterior pituitary failure was 57.1%. Occurrence of total and partial growth hormone deficiency (GHD/GHI) was 39.7%, while LH/FSH, TSH and ACTH deficiencies were less frequent, namely 23.0%, 16.7% and 10.3%, respectively. Of the 82 patients with multiple endocrine evaluations, 31.7% presented significant changes in hormonal deficiencies during the follow-up period: new hormone deficiencies developed in 16 patients, while hormonal disturbances resolved in 10 subjects. Looking for factors influencing the prevalence of pituitary dysfunction, endocrine results were analyzed in relation to age, gender, GCS scores, injury types, basal skull fracture, ventricular drain insertion and necessity of neurosurgical intervention. All hormonal disturbances were more prevalent after severe trauma (OR: 3.25, p=0.002), while the need for surgery proved to be an independent determinant of multiple and GH deficits (OR: 3.72 (p=0.004) and 9.33 (p=0.001)).CONCLUSION: Post-traumatic hypopituitarism is common and may evolve or resolve over time. Victims of severe TBI and/or patients who have undergone neurosurgical intervention for head injury are the most prone to post-traumatic hypopituitarism.
  •  
24.
  • Richter, Sophie, et al. (författare)
  • Prognostic Value of Serum Biomarkers in Patients With Moderate-Severe Traumatic Brain Injury, Differentiated by Marshall Computer Tomography Classification
  • 2023
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 40:21-22, s. 2297-2310
  • Tidskriftsartikel (refereegranskat)abstract
    • Prognostication is challenging in patients with traumatic brain injury (TBI) in whom computed tomography (CT) fails to fully explain a low level of consciousness. Serum biomarkers reflect the extent of structural damage in a different way than CT does, but it is unclear whether biomarkers provide additional prognostic value across the range of CT abnormalities. This study aimed to determine the added predictive value of biomarkers, differentiated by imaging severity. This prognostic study used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (2014-2017). The analysis included patients aged & GE;16 years with a moderate-severe TBI (Glasgow Coma Scale [GCS] <13) who had an acute CT and serum biomarkers obtained & LE;24h of injury. Of six protein biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1), the most prognostic panel was selected using lasso regression. The performance of established prognostic models (CRASH and IMPACT) was assessed before and after the addition of the biomarker panel and compared between patients with different CT Marshall scores (Marshall score <3 vs. Marshall score & GE;3). Outcome was assessed at six months post-injury using the extended Glasgow Outcome Scale (GOSE), and dichotomized into favorable and unfavorable (GOSE <5). We included 872 patients with moderate-severe TBI. The mean age was 47 years (range 16-95); 647 (74%) were male and 438 (50%) had a Marshall CT score <3. The serum biomarkers GFAP, NFL, S100B and UCH-L1 provided complementary prognostic information; NSE and Tau showed no added value. The addition of the biomarker panel to established prognostic models increased the area under the curve (AUC) by 0.08 and 0.03, and the explained variation in outcome by 13-14% and 7-8%, for patients with a Marshall score of <3 and & GE;3, respectively. The incremental AUC of biomarkers for individual models was significantly greater when the Marshall score was <3 compared with & GE;3 (p < 0.001). Serum biomarkers improve outcome prediction after moderate-severe TBI across the range of imaging severities and especially in patients with a Marshall score <3.
  •  
25.
  • Richter, Sophie, et al. (författare)
  • Serum biomarkers identify critically ill traumatic brain injury patients for MRI
  • 2022
  • Ingår i: Critical Care. - : BioMed Central (BMC). - 1364-8535 .- 1466-609X. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings.METHODS: Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) < 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost-benefit analysis for the USA and UK health care settings was also performed. RESULTS: Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients without a recorded pre-intubation GCS.CONCLUSIONS: Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill patients with moderate-severe TBI at no added cost.
  •  
26.
  • Schranz, Daniel, et al. (författare)
  • Increased level of LIGHT/TNFSF14 is associated with survival in aneurysmal subarachnoid hemorrhage
  • 2021
  • Ingår i: Acta Neurologica Scandinavica. - : John Wiley & Sons. - 0001-6314 .- 1600-0404. ; 143:5, s. 530-537
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Multiple cytokines have been implicated in aneurysmal subarachnoid hemorrhage (aSAH), but tumor necrosis factor superfamily 14 (LIGHT/TNFSF14) and oncostatin-M (OSM) have not been previously explored.Aims of the study: The primary objective of this study was to examine the relationship between TNFSF14 and OSM levels and survival. Our secondary goal was to investigate a potential association between these markers and the incidence of delayed cerebral ischemia (DCI).Materials & methods: We consecutively recruited 60 patients with a clinical diagnosis of aSAH. LIGHT/TNFSF14 and OSM serum concentrations were determined by ELISA. The primary endpoint was survival at Day 30, while development of DCI was assessed as secondary outcome.Results: Patients had significantly higher levels of both markers than the control group (median of LIGHT: 18.1 pg/ml vs. 7 pg/ml; p = 0.01; median of OSM: 10.3 pg/ml vs. 2.8 pg/ml, p < 0.001). Significantly lower serum level of LIGHT/TNFSF14 was found in nonsurviving patients (n = 9) compared with survivors (n = 51; p = 0.011). Based on ROC analysis, serum LIGHT/TNFSF14 with a cutoff value of >7.95 pg/ml predicted 30-day survival with a sensitivity of 71% and specificity of 78% (Area: 0.763; 95% CI: 0.604-0.921, p = 0.013). In addition, it was also a predictor of DCI with a sensitivity of 72.7% and a specificity of 62.5% (AUC: 0.702; 95% CI: 0.555-0.849, p = 0.018). Based on binary logistic regression analysis, LIGHT/TNFSF14 was found to be independently associated with 30-day mortality, but not with DCI.Conclusion: In this cohort, a higher serum level of LIGHT/TNFSF14 was associated with increased survival of patients with aSAH.
  •  
27.
  • Sorinola, Abayomi, et al. (författare)
  • Effectiveness of Traumatic Brain Injury Management Guideline Introduction in Hungary
  • 2018
  • Ingår i: Turkish Neurosurgery. - : Turkish Neurosurgi[c]al Society. - 1019-5149. ; 28:3, s. 410-415
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To describe the impact of the Traumatic Brain Injury management guideline introduction in Hungary. MATERIAL and METHODS: Hospital discharge records (HDR) including age, gender, codes of interventions applied, ICD codes of diagnosed disorders of patients admitted between 01/01/2004 and 31/12/2010 with the diagnosis of intracranial injury (S06 by ICD10) from every inpatient institution in Hungary were collected from the database of National Health Insurance Fund (NHIF). The Case Fatality Ratios (CFR) for one week, one month and six months were calculated for the periods before and after the guideline introduction. The change of CFRs was applied as indicators for change of clinical quality elicited by the guideline.RESULTS: The centers together at one week, one month and six months had pre-guideline introduction CFRs of 23.4%, 37.7% and 47.5% and post-guideline introduction CFRs of 22.1%, 39.1%, and 50.0% respectively. The secondary institutions together at one week, one month and six months had pre-guideline introduction CFRs of 21.5%, 34.8% and 46.3% and post-guideline introduction CFRs of 21.9%, 37.0%, and 48.9% respectively. None of the CFRs showed significant change.CONCLUSION: The effectiveness of TBI management guideline adaptation in Hungary is poor. Without supportive financing and external auditing system, guideline introduction alone cannot achieve standard clinical practice and a reduction in CFR.
  •  
28.
  • Sorinola, Abayomi, et al. (författare)
  • Risk Factors of External Ventricular Drain Infection : Proposing a Model for Future Studies
  • 2019
  • Ingår i: Frontiers in Neurology. - : Frontiers Media S.A.. - 1664-2295. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Background: External ventricular drain (EVD) has a major role in the management and monitoring of intracranial pressure (ICP) and its major complication is EVD infection. The risk factors for EVD infection are still a major topic of controversy, hence the need for further research.Objective: The objective of this review was to identify risk factors that affect the incidence of EVD infection and create a model, which can be used in future studies in order to contribute to elaborations on guideline for EVD.Methods: A PubMed and Google Scholar literature search was performed and data were extracted from studies published from 1966 through 2017. The search of the databases generated 604 articles and 28 articles of these were found to be relevant. A manual search of the 28 relevant papers generated 4 new articles. Of the 32 relevant articles, 20 articles that performed a multivariate analysis of the suspected risk factors of EVD infection and had a positive culture as a mandatory component in diagnosis were selected for data collection and analysis.Results: Because reviewed papers investigated only a few influencing factors, and could not determine convincingly the real risk factors of EVD infection and their real strengths. A total of 15 supposed influencing factors which includes: age, age & sex interactions, coinfection, catheter insertion outside the hospital, catheter type, CSF leakage, CSF sampling frequency, diagnosis, duration of catheterization, ICP > 20 mmHg, irrigation, multiple catheter, neurosurgical operation, reduced CSF glucose at catheter insertion and sex were identified.Conclusion: This review summarizes a set of variables which have to be covered by future clinical epidemiological investigations in order to describe the etiological background of EVD infection.
  •  
29.
  • Szarka, Nikolett, et al. (författare)
  • Hypertension-Induced Enhanced Myogenic Constriction of Cerebral Arteries Is Preserved after Traumatic Brain Injury
  • 2017
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 34:14, s. 2315-2319
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) was shown to impair pressure-induced myogenic response of cerebral arteries, which is associated with vascular and neural dysfunction and increased mortality of TBI patients. Hypertension was shown to enhance myogenic tone of cerebral arteries via increased vascular production of 20-hydroxyeicosatrienoic acid (HETE). This adaptive mechanism protects brain tissue from pressure/volume overload; however, it can also lead to increased susceptibility to cerebral ischemia. Although both effects may potentiate the detrimental vascular consequences of TBI, it is not known how hypertension modulates the effect of TBI on myogenic responses of cerebral vessels. We hypothesized that in hypertensive rats, the enhanced myogenic cerebrovascular response is preserved after TBI. Therefore, we investigated the myogenic responses of isolated middle cerebral arteries (MCA) of normotensive and spontaneously hypertensive rats (SHR) after severe impact acceleration diffuse brain injury. TBI diminished myogenic constriction of MCAs isolated from normotensive rats, whereas the 20-HETE-mediated enhanced myogenic response of MCAs isolated from SHRs was not affected by TBI. These results suggest that the optimal cerebral perfusion pressure values and vascular signaling pathways can be different and, therefore, should be targeted differently in normotensive and hypertensive patients following TBI.
  •  
30.
  • Szarka, Nikolett, et al. (författare)
  • Single mild traumatic brain injury induces persistent disruption of the blood-brain barrier, neuroinflammation and ognitive decline in hypertensive rats
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 20:13, s. 3223-3223
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) induces blood-brain barrier (BBB) disruption, which contributes to secondary injury of brain tissue and development of chronic cognitive decline. However, single mild (m)TBI, the most frequent form of brain trauma disrupts the BBB only transiently. We hypothesized, that co-morbid conditions exacerbate persistent BBB disruption after mTBI leading to long term cognitive dysfunction. Since hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive Wistar and spontaneously hypertensive rats (SHR) and we assessed BBB permeability, extravasation of blood-borne substances, neuroinflammation and cognitive function two weeks after trauma. We found that mTBI induced a significant BBB disruption two weeks after trauma in SHRs but not in normotensive Wistar rats, which was associated with a significant accumulation of fibrin and increased neuronal expression of inflammatory cytokines TNFα, IL-1β and IL-6 in the cortex and hippocampus. SHRs showed impaired learning and memory two weeks after mild TBI, whereas cognitive function of normotensive Wistar rats remained intact. Future studies should establish the mechanisms through which hypertension and mild TBI interact to promote persistent BBB disruption, neuroinflammation and cognitive decline to provide neuroprotection and improve cognitive function in patients with mTBI. 
  •  
31.
  • Szarka, Nikolett, et al. (författare)
  • Traumatic brain injury impairs myogenic constriction of cerebral arteries : role of mitochondria-derived H2O2 and TRPV4-dependent activation of BKca Channels
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:7, s. 930-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) impairs autoregulation of cerebral blood flow, which contributes to the development of secondary brain injury, increasing mortality of patients. Impairment of pressure-induced myogenic constriction of cerebral arteries plays a critical role in autoregulatory dysfunction; however, the underlying cellular and molecular mechanisms are not well understood. To determine the role of mitochondria-derived H2O2 and large-conductance calcium-activated potassium channels (BKCa) in myogenic autoregulatory dysfunction, middle cerebral arteries (MCAs) were isolated from rats with severe weight drop-impact acceleration brain injury. We found that 24 h post-TBI MCAs exhibited impaired myogenic constriction, which was restored by treatment with a mitochondria-targeted antioxidant (mitoTEMPO), by scavenging of H2O2 (polyethylene glycol [PEG]-catalase) and by blocking both BKCa channels (paxilline) and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels (HC 067047). Further, exogenous administration of H2O2 elicited significant dilation of MCAs, which was inhibited by blocking either BKCa or TRPV4 channels. Vasodilation induced by the TRPV4 agonist GSK1016790A was inhibited by paxilline. In cultured vascular smooth muscle cells H2O2 activated BKCa currents, which were inhibited by blockade of TRPV4 channels. Collectively, our results suggest that after TBI, excessive mitochondria-derived H2O2 activates BKCa channels via a TRPV4-dependent pathway in the vascular smooth muscle cells, which impairs pressure-induced constriction of cerebral arteries. Future studies should elucidate the therapeutic potential of pharmacological targeting of this pathway in TBI, to restore autoregulatory function in order to prevent secondary brain damage and decrease mortality.
  •  
32.
  • Tadepalli, Sai Ambika, et al. (författare)
  • Long-term cognitive impairment without diffuse axonal injury following repetitive mild traumatic brain injury in rats
  • 2020
  • Ingår i: Behavioural Brain Research. - : Elsevier. - 0166-4328 .- 1872-7549. ; 378
  • Tidskriftsartikel (refereegranskat)abstract
    • Repetitive mild traumatic brain injuries (TBI) impair cognitive abilities and increase risk of neurodegenerative disorders in humans. We developed two repetitive mild TBI models in rats with different time intervals between successive weight-drop injuries. Rats were subjected to repetitive Sham (no injury), single mild (mTBI), repetitive mild (rmTBI - 5 hits, 24 h apart), rapid repetitive mild (rapTBI - 5 hits, 5 min apart) or a single severe (sTBI) TBI. Cognitive performance was assessed 2 and 8 weeks after TBI in the novel object recognition test (NOR), and 6-7 weeks after TBI in the water maze (MWM). Acute immunohistochemical markers were evaluated 24 h after TBI, and blood biomarkers were measured with ELISA 8 weeks after TBI. In the NOR, both rmTBI and rapTBI showed poor performance at 2 weeks post-injury. At 8 weeks post-injury, the rmTBI group still performed worse than the Sham and mTBI groups, while the rapTBI group recovered. In the MWM, the rapTBI group performed worse than the Sham and mTBI groups. Acute APP and RMO-14 immunohistochemistry showed axonal injury at the pontomedullary junction in the sTBI, but not in other groups. ELISA showed increased serum GFAP levels 8 weeks after sTBI, while no differences were found between the injury groups in the levels of phosphorylated-tau and S100β. Results suggest that the rmTBI protocol is the most suitable model for testing cognitive impairment after mild repetitive head injuries and that the prolonged cognitive impairment after repetitive mild TBI originates from different structural and molecular mechanisms compared to similar impairments after single sTBI. 
  •  
33.
  • Tamas, Andrea, et al. (författare)
  • Effect of PACAP in central and peripheral nerve injuries
  • 2012
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 13:7, s. 8430-8448
  • Forskningsöversikt (refereegranskat)abstract
    • Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.
  •  
34.
  • Tamás, Viktória, et al. (författare)
  • The Young Male Syndrome : An Analysis of Sex, Age, Risk Taking and Mortality in Patients With Severe Traumatic Brain Injuries
  • 2019
  • Ingår i: Frontiers in Neurology. - : Frontiers Media S.A.. - 1664-2295. ; 10:366
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher risk taking is particularly characteristic for males between 15 and 35 years, the age when intrasexual competition is the strongest. This fitness-maximizing strategy, however, also has negative consequences; previous data revealed that males have a significantly higher tendency to die in accidents. This retrospective study aimed to assess whether age-related risk taking, often associated with the reproductive competition between males, and referred to as the Young Male Syndrome (YMS), may play a role in the high incidence of severe traumatic brain injury (sTBI) in young males. Derived from the available evidence and the main assumptions of the YMS, we expected that men, especially when they are in the age when their reproductive potential peaks, are more likely to suffer sTBI from highly risky behaviors that also lead to higher mortality. It was also expected that alcohol intoxication makes the demographic pattern of sTBI even more similar to what previous research on the YMS implies. We analyzed demographic data of patients with sTBI (N = 365) registered in a clinical database. To this end, we built Generalized Linear Mixed Models (GLMM) to reveal which of the demographic characteristics are the best predictors for risky behaviors leading to sTBI and death as a consequence of the injury. The data suggest that younger people acquired sTBI from riskier behaviors compared to members of older age groups, irrespective of their sex. Moreover, being male and being alcohol intoxicated also contributed significantly to risk-taking behavior. Mortality rate after the injury, however, increased with the age of the patient and did not depend on the riskiness of the behavior. The results indicate that the demographic distribution of the specific patient population in our focus cannot be simply explained by the YMS. However, higher incidence rates of males among the patients are in line with the core assumptions of the YMS. These data indicate that epidemiological studies should also take into consideration evolutionary theories and highlight the importance of age and sex specific prevention strategies.
  •  
35.
  • Theakstone, Ashton G., et al. (författare)
  • Vibrational spectroscopy for the triage of traumatic brain injury computed tomography priority and hospital admissions
  • 2022
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 39:11-12, s. 773-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Computed tomography (CT) brain imaging is routinely used to support clinical decision-making in patients with traumatic brain injury (TBI). Only 7% of scans, however, demonstrate evidence of TBI. The other 93% of scans contribute a significant cost to the healthcare system and a radiation risk to patients. There may be better strategies to identify which patients, particularly those with mild TBI, are at risk of deterioration and require hospital admission. We introduce a blood serum liquid biopsy that utilizes attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy with machine learning algorithms as a decision-making tool to identify which patients with mild TBI will most likely present with a positive CT scan. Serum samples were obtained from patients (n = 298) patients who had acquired a TBI and were enrolled in CENTER-TBI and from asymptomatic control patients (n = 87). Injury patients (all severities) were stratified against non-injury controls. The cohort with mild TBI was further examined by stratifying those who had at least one CT abnormality against those who had no CT abnormalities. The test performed exceptionally well in classifications of patients with mild injury versus non-injury controls (sensitivity = 96.4% and specificity = 98.0%) and also provided a sensitivity of 80.2% when stratifying mild patients with at least one CT abnormality against those without. The results provided illustrate the test ability to identify four of every five CT abnormalities and show great promise to be introduced as a triage tool for CT priority in patients with mild TBI.
  •  
36.
  • Thomas, Ilias, 1987-, et al. (författare)
  • Serum metabolome associated with severity of acute traumatic brain injury
  • 2022
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain injury (TBI). Associations between this and systemic metabolism and their potential prognostic value are poorly understood. Here, we aimed to describe the serum metabolome (including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to severity of injury and patient outcome. We performed a comprehensive metabolomics study in a cohort of 716 patients with TBI and non-TBI reference patients (orthopedic, internal medicine, and other neurological patients) from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We identified panels of metabolites specifically associated with TBI severity and patient outcomes. Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins) were inversely associated with TBI severity and were among the strongest predictors of TBI patient outcomes, which was further confirmed in a separate validation dataset of 558 patients. The observed metabolic patterns may reflect different pathophysiological mechanisms, including protective changes of systemic lipid metabolism aiming to maintain lipid homeostasis in the brain.
  •  
37.
  • Tóth, Arnold, et al. (författare)
  • Cerebral Microbleeds Temporarily Become Less Visible or Invisible in Acute Susceptibility Weighted Magnetic Resonance Imaging : A Rat Study
  • 2019
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 36:10, s. 1670-1677
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, we reported human traumatic brain injury cases demonstrating acute to subacute microbleed appearance changes in susceptibility-weighted imaging (SWI-magnetic resonance imaging [MRI]). This study aims to confirm and characterize such temporal microbleed appearance alterations in an experimental model. To elicit microbleed formation, brains of male Sprague Dawley rats were pierced in a depth of 4 mm, in a parasagittal position bilaterally using 159 mu m and 474 mu m needles, without the injection of autologous blood or any agent. Rats underwent 4.7 T MRI immediately, then at multiple time points until 125 h. Volumes of hypointensities consistent with microbleeds in SWI were measured using an intensity threshold-based approach. Microbleed volumes across time points were compared using repeated measures analysis of variance. Microbleeds were assessed by Prussian blue histology at different time points. Hypointensity volumes referring to microbleeds were significantly decreased (corrected p < 0.05) at 24 h compared with the immediate or the 125 h time points. By visual inspection, microbleeds were similarly detectable at the immediate and 125 h imaging but were decreased in extent or completely absent at 24 h or 48 h. Histology confirmed the presence of microbleeds at all time points and in all animals. This study confirmed a general temporary reduction in visibility of microbleeds in the acute phase in SWI. Such short-term appearance dynamics of microbleeds should be considered when using SWI as a diagnostic tool for microbleeds in traumatic brain injury and various diseases.
  •  
38.
  • Toth, Luca, et al. (författare)
  • Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults
  • 2022
  • Ingår i: GeroScience. - : Springer. - 2509-2715 .- 2509-2723. ; 44:6, s. 2771-2783
  • Tidskriftsartikel (refereegranskat)abstract
    • Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults. 
  •  
39.
  • Toth, Peter, et al. (författare)
  • Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling : Pathomechanisms, perspectives, and therapeutic implications
  • 2016
  • Ingår i: American Journal of Physiology. - : HighWire Press. - 0002-9513 .- 2163-5773. ; 311:5, s. H1118-H1131
  • Forskningsöversikt (refereegranskat)abstract
    • Traumatic brain injury (TBI) is a major health problem worldwide. In addition to its high mortality (35-40%), survivors are left with cognitive, behavioral, and communicative disabilities. While little can be done to reverse initial primary brain damage caused by trauma, the secondary injury of cerebral tissue due to cerebro-microvascular alterations and dysregulation of cerebral blood flow (CBF) is potentially preventable. This review focuses on functional, cellular, and molecular changes of autoregulatory function of CBF (with special focus on cerebrovascular myogenic response) that occur in cerebral circulation after TBI and explores the links between autoregulatory dysfunction, impaired myogenic response, microvascular impairment, and the development of secondary brain damage. We further provide a synthesized translational view of molecular and cellular mechanisms involved in cortical spreading depolarization-related neurovascular dysfunction, which could be targeted for the prevention or amelioration of TBI-induced secondary brain damage.
  •  
40.
  • Trivedi, Dhanisha, 1993-, et al. (författare)
  • Screening Performance of S100 Calcium-Binding Protein B, Glial Fibrillary Acidic Protein, and Ubiquitin C-Terminal Hydrolase L1 for Intracranial Injury Within Six Hours of Injury and Beyond
  • 2024
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 41:3-4, s. 349-358
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The Scandinavian NeuroTrauma Committee (SNC) guidelines recommend S100B as a screening tool for early detection of Traumatic brain injury (TBI) in patients presenting with an initial Glasgow coma scale (GCS) of 14-15. The objective of the current study was to compare S100B's diagnostic performance within the recommended 6-hour window after injury, compared to GFAP and UCH-L1. The secondary outcome of interest was the ability of these biomarkers in detecting traumatic intracranial pathology beyond the 6-hour mark.METHODS: The Center-TBI core database (2014-2017) was queried for data pertaining to all TBI patients with an initial GCS of 14-15 who had a blood sample taken within 6 hours of injury in which the levels of S100B, GFAP, and UCH-L1 were measured. As a subgroup analysis, data involving patients with blood samples taken within 6-9 hours, and 9-12 hours were analyzed separately for diagnostic ability. The diagnostic ability of these biomarkers for detecting any intracranial injury was evaluated based on the area under the receiver operating characteristic curve (AUC). Each biomarker's sensitivity, specificity, and accuracy were also reported at the cutoff that maximized Youden's index.RESULTS: A total of 531 TBI patients with GCS 14-15 on admission had a blood sample taken within 6 hours, of whom 24.9% (N = 132) had radiologically confirmed intracranial injury. The AUCs of GFAP (0.86, 95% confidence interval (CI): 0.82-0.90) and UCH-L1 (0.81, 95% CI: 0.76-0.85) were statistically significantly higher than that of S100B (0.74, 95% CI: 0.69-0.79) during this time. There was no statistically significant difference in the predictive ability of S100B when sampled within 6 hours, 6-9 hours, and 9-12 hours of injury, as the p-values were >0.05 when comparing the AUCs. Overlapping AUC 95% CI suggests no benefit of a combined GFAP and UCH-L1 screening tool over GFAP during the time periods studied [ 0.87 (0.83-0.90) vs 0.86 (0.82-0.90) when sampled within 6 hours of injury, 0.83 (0.78-0.88) vs 0.83 (0.78-0.89) within 6-to-9 hours and 0.81 (0.73-0.88) vs 0.79 (0.72-0.87) within 9-12 hours].CONCLUSIONS: Targeted analysis of the CENTER-TBI core database, with focus on the patient category for which biomarker testing is recommended by the SNC guidelines, revealed that GFAP and UCH-L1 perform superior to S100B in predicting CT-positive intracranial lesions within 6 hours of injury. GFAP continued to exhibit superior predictive ability to S100B during the time periods studied. S100B displayed relatively unaltered screening performance beyond the diagnostic timeline provided by SNC guidelines. These findings suggest the need for a re-evaluation of the current SNC TBI guidelines.
  •  
41.
  • Wang, Kevin K., et al. (författare)
  • Blood-based traumatic brain injury biomarkers : Clinical utilities and regulatory pathways in the United States, Europe and Canad
  • 2021
  • Ingår i: Expert Review of Molecular Diagnostics. - : Expert Reviews Ltd.. - 1473-7159 .- 1744-8352. ; 21:12, s. 1303-1321
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia.Areas covered: This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada.Expert opinion: TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
  •  
42.
  • Whitehouse, Daniel P., et al. (författare)
  • Blood biomarkers and structural imaging correlations post-traumatic brain injury : A systematic review
  • 2021
  • Ingår i: Neurosurgery. - : Wolters Kluwer. - 0148-396X .- 1524-4040. ; 90:2, s. 170-179
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Blood biomarkers are of increasing importance in the diagnosis and assessment of traumatic brain injury (TBI). However, the relationship between them and lesions seen on imaging remains unclear.Objective: To perform a systematic review of the relationship between blood biomarkers and intracranial lesion types, intracranial lesion injury patterns, volume/number of intracranial lesions, and imaging classification systems.Methods: We searched Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, and Cumulative Index to Nursing and Allied Health Literature from inception to May 2021, and the references of included studies were also screened. Heterogeneity in study design, biomarker types, imaging modalities, and analyses inhibited quantitative analysis, with a qualitative synthesis presented.Results: Fifty-nine papers were included assessing one or more biomarker to imaging comparisons per paper: 30 assessed imaging classifications or injury patterns, 28 assessed lesion type, and 11 assessed lesion volume or number. Biomarker concentrations were associated with the burden of brain injury, as assessed by increasing intracranial lesion volume, increasing numbers of traumatic intracranial lesions, and positive correlations with imaging classification scores. There were inconsistent findings associating different biomarkers with specific imaging phenotypes including diffuse axonal injury, cerebral edema, and intracranial hemorrhage.Conclusion: Blood-based biomarker concentrations after TBI are consistently demonstrated to correlate burden of intracranial disease. The relation with specific injury types is unclear suggesting a lack of diagnostic specificity and/or is the result of the complex and heterogeneous nature of TBI.
  •  
43.
  • Whitehouse, Daniel P., et al. (författare)
  • Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury : A CENTER-TBI study
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI.Methods: Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering.Findings: 2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0·48-0·49; p<0·05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0·44-0·44; p<0·01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83·9% of variance, with phenotyping characteristics related to clinical injury severity.Interpretation: Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy