SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(D'Arrigo Rosanne) "

Sökning: WFRF:(D'Arrigo Rosanne)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anchukaitis, Kevin, et al. (författare)
  • Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions
  • 2017
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 163, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regionalscale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (MayeAugust) mean temperatures across the extratropical Northern Hemisphere (40-90N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750e1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.
  •  
2.
  • Büntgen, Ulf, et al. (författare)
  • Global wood anatomical perspective on the onset of the Late Antique Little Ice Age (LALIA) in the mid-6th century CE
  • 2022
  • Ingår i: Science Bulletin. - : Elsevier BV. - 2095-9273. ; 67:22, s. 2336-2344
  • Tidskriftsartikel (refereegranskat)abstract
    • Linked to major volcanic eruptions around 536 and 540 CE, the onset of the Late Antique Little Ice Age has been described as the coldest period of the past two millennia. The exact timing and spatial extent of this exceptional cold phase are, however, still under debate because of the limited resolution and geographical distribution of the available proxy archives. Here, we use 106 wood anatomical thin sections from 23 forest sites and 20 tree species in both hemispheres to search for cell-level fingerprints of ephemeral summer cooling between 530 and 550 CE. After cross-dating and double-staining, we identified 89 Blue Rings (lack of cell wall lignification), nine Frost Rings (cell deformation and collapse), and 93 Light Rings (reduced cell wall thickening) in the Northern Hemisphere. Our network reveals evidence for the strongest temperature depression between mid-July and early-August 536 CE across North America and Eurasia, whereas more localised cold spells occurred in the summers of 532, 540–43, and 548 CE. The lack of anatomical signatures in the austral trees suggests limited incursion of stratospheric volcanic aerosol into the Southern Hemisphere extra-tropics, that any forcing was mitigated by atmosphere-ocean dynamical responses and/or concentrated outside the growing season, or a combination of factors. Our findings demonstrate the advantage of wood anatomical investigations over traditional dendrochronological measurements, provide a benchmark for Earth system models, support cross-disciplinary studies into the entanglements of climate and history, and question the relevance of global climate averages.
  •  
3.
  • D'Arrigo, Rosanne, et al. (författare)
  • Three centuries of Myanmar monsoon climate variability inferred from teak tree rings
  • 2011
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 38, s. L24705-
  • Tidskriftsartikel (refereegranskat)abstract
    • Asian monsoon extremes critically impact much of the globe's population. Key gaps in our understanding of monsoon climate remain due to sparse coverage of paleoclimatic information, despite intensified recent efforts. Here we describe a ring width chronology of teak, one of the first high-resolution proxy records for the nation of Myanmar. Based on 29 samples from 20 living trees and spanning from 1613-2009, this record, from the Maingtha forest reserve north of Mandalay, helps fill a substantial gap in spatial coverage of paleoclimatic records for monsoon Asia. Teak growth is positively correlated with rainfall and Palmer Drought Severity Index variability over Myanmar, during and prior to the May-September monsoon season (e. g., r = 0.38 with Yangon rainfall, 0.001, n 68). Importantly, this record also correlates significantly with larger-scale climate indices, including core Indian rainfall (23 degrees N, 76 degrees E; a particularly sensitive index of the monsoon), and the El Nino-Southern Oscillation (ENSO). The teak ring width value following the so-called 1997-98 El Nino of the Century suggests that this was one of the most severe droughts in the past similar to 300 years in Myanmar. Evidence for past dry conditions inferred for Myanmar is consistent with tree-ring records of decadal megadroughts developed for Thailand and Vietnam. These results confirm the climate signature related to monsoon rainfall in the Myanmar teak record and the considerable potential for future development of climate-sensitive chronologies from Myanmar and the broader region of monsoon Asia.
  •  
4.
  • Esper, Jan, et al. (författare)
  • Large-scale, millennial-length temperature reconstructions from tree-rings
  • 2018
  • Ingår i: Dendrochronologia. - : Elsevier BV. - 1125-7865 .- 1612-0051. ; 50, s. 81-90
  • Forskningsöversikt (refereegranskat)abstract
    • Over the past two decades, the dendroclimate community has produced various annually resolved, warm season temperature reconstructions for the extratropical Northern Hemisphere. Here we compare these tree-ring based reconstructions back to 831 CE and present a set of basic metrics to provide guidance for non-specialists on their interpretation and use. We specifically draw attention to (i) the imbalance between (numerous) short and (few) long site chronologies incorporated into the hemispheric means, (ii) the beneficial effects of including maximum latewood density chronologies in the recently published reconstructions, (iii) a decrease in reconstruction covariance prior to 1400 CE, and (iv) the varying amplitudes and trends of reconstructed temperatures over the past 1100 years. Whereas the reconstructions agree on several important features, such as warmth during medieval times and cooler temperatures in the 17th and 19th centuries, they still exhibit substantial differences during 13th and 14th centuries. We caution users who might consider combining the reconstructions through simple averaging that all reconstructions share some of the same underlying tree-ring data, and provide four recommendations to guide future efforts to better understand past millennium temperature variability.
  •  
5.
  • Esper, Jan, et al. (författare)
  • The IPCC’s reductive Common Era temperature history
  • 2024
  • Ingår i: Communications Earth & Environment. - 2662-4435. ; 5
  • Forskningsöversikt (refereegranskat)abstract
    • Common Era temperature variability has been a prominent component in Intergovernmental Panel on Climate Change reports over the last several decades and was twice featured in their Summary for Policymakers. A single reconstruction of mean Northern Hemisphere temperature variability was first highlighted in the 2001 Summary for Policymakers, despite other estimates that existed at the time. Subsequent reports assessed many large-scale temperature reconstructions, but the entirety of Common Era temperature history in the most recent Sixth Assessment Report of the Intergovernmental Panel on Climate Change was restricted to a single estimate of mean annual global temperatures. We argue that this focus on a single reconstruction is an insufficient summary of our understanding of temperature variability over the Common Era. We provide a complementary perspective by offering an alternative assessment of the state of our understanding in high-resolution paleoclimatology for the Common Era and call for future reports to present a more accurate and comprehensive assessment of our knowledge about this important period of human and climate history.
  •  
6.
  • Martin-Benito, Dario, et al. (författare)
  • DENDROCHRONOLOGICAL DATING OF THE WORLD TRADE CENTER SHIP, LOWER MANHATTAN, NEW YORK CITY
  • 2014
  • Ingår i: Tree-ring research. - : Tree-Ring Society. - 1536-1098 .- 2162-4585. ; 70:2, s. 65-77
  • Tidskriftsartikel (refereegranskat)abstract
    • On July 2010, archaeologists monitoring excavation at the World Trade Center site (WTC) in Lower Manhattan found the remains of a portion of a ship's hull. Because the date of construction and origin of the timbers were unknown, samples from different parts of the ship were taken for dendrochronological dating and provenancing. After developing a 280-year long floating chronology from 19 samples of the white oak group (Quercus section Leucobalanus), we used 21 oak chronologies from the eastern United States to evaluate absolute dating and provenance. Our results showed the highest agreement between the WTC ship chronology and two chronologies from Philadelphia (r = 0.36; t = 6.4; p < 0.001; n = 280) and eastern Pennsylvania (r = 0.35; t = 6.3; p < 0.001; n = 280). The last ring dates of the seven best-preserved samples suggest trees for the ship were felled in 1773 CE or soon after. Our analyses suggest that all the oak timbers used to build the ship most likely originated from the same location within the Philadelphia region, which supports the hypothesis independently drawn from idiosyncratic aspects of the vessel's construction, that the ship was the product of a small shipyard. Few late-18th Century ships have been found and there is little historical documentation of how vessels of this period were constructed. Therefore, the ship's construction date of 1773 is important in confirming that the hull encountered at the World Trade Center represents a rare and valuable piece of American shipbuilding history.
  •  
7.
  • Rao, Mukund P., et al. (författare)
  • A double bootstrap approach to Superposed Epoch Analysis to evaluate response uncertainty
  • 2019
  • Ingår i: Dendrochronologia. - : Elsevier BV. - 1125-7865 .- 1612-0051. ; 55, s. 119-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The association between climate variability and episodic events, such as the antecedent moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as the average climate conditions prior to and following all event years or their deviation from climatology. However, the magnitude and significance of the inferred climate association may be sensitive to the selection or omission of individual key years, potentially resulting in a biased assessment of the relationship between these events and climate. Here we describe and test a modified double-bootstrap SEA that generates multiple unique draws of the key years and evaluates the sign, magnitude, and significance of event-climate relationships within a probabilistic framework. This multiple re-sampling helps quantify multiple uncertainties inherent in conventional applications of SEA within dendrochronology and paleoclimatology. We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire events in the western United States. Finally, we make our Matlab and R code available to be adapted for future SEA applications.
  •  
8.
  • Schollaen, Karina, et al. (författare)
  • Multiple tree-ring chronologies (ring width, delta C-13 and delta O-18) reveal dry and rainy season signals of rainfall in Indonesia
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 73, s. 170-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic hazards, such as severe droughts and floods, affect extensive areas across monsoon Asia and can have profound impacts on the populations of that region. The area surrounding Indonesia, including large portions of the eastern Indian Ocean and Java Sea, plays a key role in the global climate system because of the enormous heat and moisture exchange that occurs between the ocean and atmosphere there. Here, we evaluate the influence of rainfall variability on multiple tree-ring parameters of teak (Tectona grandis) trees growing in a lowland rain forest in Central Java (Indonesia). We assess the potential of, annually resolved, tree-ring width, stable carbon (delta C-13) and oxygen (delta O-18) isotope records to improve our understanding of the Asian monsoon variability. Climate response analysis with regional, monthly rainfall data reveals that all three tree-ring parameters are significantly correlated to rainfall, albeit during different monsoon seasons. Precipitation in the beginning of the rainy season (Sep-Nov) is important for tree-ring width, confirming previous studies. Compared to ring width, the stable isotope records possess a higher degree of common signal, especially during portions of the peak rainy season (delta C-13: Dec-May; delta O-18: Nov-Feb) and are negatively correlated to rainfall. In addition, tree-ring delta O-18 also responds positively to peak dry season rainfall, although the delta O-13 rainy season signal is stronger and more time-stable. The correlations of opposite sign reflect the distinct seasonal contrast of the delta O-18 signatures in rainfall (O-18(Pre)) during the dry (O-18-enriched rain) and rainy (O-18-depleted rain) seasons. This difference in O-18(Pre) signal reflects the combination of two signals in the annual tree-ring delta O-18 record. Highly resolved intra-annual 8180 isotope analyses suggest that the signals of dry and rainy season can be distinguished clearly. Thereby reconstructions can improve our understanding of variations and trends of the hydrological cycle over the Indonesian archipelago.
  •  
9.
  • Seiler, Ruedi, et al. (författare)
  • Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy)
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that preeruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna.
  •  
10.
  • Wilson, Rob, et al. (författare)
  • Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:24, s. 6393-6421
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate a range of blue intensity (BI) treering parameters in eight conifer species (12 sites) from Tasmania and New Zealand for their dendroclimatic potential, and as surrogate wood anatomical proxies. Using a dataset of ca. 10-15 trees per site, we measured earlywood maximum blue intensity (EWB), latewood minimum blue intensity (LWB), and the associated delta blue intensity (DB) parameter for dendrochronological analysis. No resin extraction was performed, impacting low-frequency trends. Therefore, we focused only on the high-frequency signal by detrending all tree-ring and climate data using a 20-year cubic smoothing spline. All BI parameters express low relative variance and weak signal strength compared to ring width. Correlation analysis and principal component regression experiments identified a weak and variable climate response for most ring-width chronologies. However, for most sites, the EWB data, despite weak signal strength, expressed strong coherence with summer temperatures. Significant correlations for LWB were also noted, but the sign of the relationship for most species is opposite to that reported for all conifer species in the Northern Hemisphere. DB results were mixed but performed better for the Tasmanian sites when combined through principal component regression methods than for New Zealand. Using the full multi-species/parameter network, excellent summer temperature calibration was identified for both Tasmania and New Zealand ranging from 52% to 78% explained variance for split periods (1901-1950/1951-1995), with equally robust independent validation (coefficient of efficiency = 0.41 to 0.77). Comparison of the Tasmanian BI reconstruction with a quantitative wood anatomical (QWA) reconstruction shows that these parameters record essentially the same strong high-frequency summer temperature signal. Despite these excellent results, a substantial challenge exists with the capture of potential secular-scale climate trends. Although DB, band-pass, and other signal processing methods may help with this issue, substantially more experimentation is needed in conjunction with comparative analysis with ring density and QWA measurements.
  •  
11.
  • Wilson, Rob, et al. (författare)
  • Last millennium northern hemisphere summer temperatures from tree rings : Part I
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 134, s. 1-18
  • Forskningsöversikt (refereegranskat)abstract
    • Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (similar to 900 1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially.
  •  
12.
  • Wilson, Rob, et al. (författare)
  • Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 134, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (~900-1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy