SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dachlythra Nadia) "

Sökning: WFRF:(Dachlythra Nadia)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chesmore, Grace E., et al. (författare)
  • Simons Observatory : characterizing the Large Aperture Telescope Receiver with radio holography
  • 2022
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 61:34, s. 10309-10319
  • Tidskriftsartikel (refereegranskat)abstract
    • We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments. 
  •  
2.
  • Chesmore, Grace E., et al. (författare)
  • Simons Observatory HoloSim-ML : machine learning applied to the efficient analysis of radio holography measurements of complex optical systems
  • 2021
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 60:29, s. 9029-9035
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-field radio holography is a common method for measuring and aligning mirror surfaces for millimeter and sub-millimeter telescopes. In instruments with more than a single mirror, degeneracies arise in the holography measurement, requiring multiple measurements and new fitting methods. We present HoloSim-ML, a Python code for beam simulation and analysis of radio holography data from complex optical systems. This code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micrometer accuracy. We apply this approach to the example of the Simons Observatory 6 m telescope.
  •  
3.
  • Creswell, James, et al. (författare)
  • Statistics of CMB polarization angles
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :02
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the distribution functions of the CMB polarization angle, focusing on the Planck 2018 CMB maps. We extend the model of Preece & Battye (2014) of Gaussian correlated Q and U Stokes parameters to allow nonzero means. When the variances of Q and U are equal and their covariance and means are zero, the polarization angle is uniformly distributed. Otherwise the uniform distribution will be modulated by harmonics with 2 and 4 phases. These modulations are visible in the Planck 2018 CMB maps. Furthermore, the mean value of U is peculiar compared to the power spectrum.
  •  
4.
  • Dachlythra, Nadia, 1993-, et al. (författare)
  • The Simons Observatory : Beam Characterization for the Small Aperture Telescopes
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a mapmaker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the mapmaker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions, and input beams. We additionally show the reconstruction quality as a function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within an ∼1.5% error for a multipole range ℓ = 30–700 and an ∼0.5% error for a multipole range ℓ = 50–200. We conclude by using a harmonic-domain component separation algorithm to verify that the beam reconstruction errors and biases observed in our analysis do not significantly bias the Simons Observatory r-measurement
  •  
5.
  • Duivenvoorden, Adriaan J., et al. (författare)
  • Probing frequency-dependent half-wave plate systematics for CMB experiments with full-sky beam convolution simulations
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:3, s. 4526-4539
  • Tidskriftsartikel (refereegranskat)abstract
    • We study systematic effects from half-wave plates (HWPs) for cosmic microwave background (CMB) experiments using full-sky time-domain beam convolution simulations. Using an optical model for a fiducial spaceborne two-lens refractor telescope, we investigate how different HWP configurations optimized for dichroic detectors centred at 95 and 150 GHz impact the reconstruction of primordial B-mode polarization. We pay particular attention to possible biases arising from the interaction of frequency-dependent HWP non-idealities with polarized Galactic dust emission and the interaction between the HWP and the instrumental beam. To produce these simulations, we have extended the capabilities of the publicly available BEAMCONV code. To our knowledge, we produce the first time-domain simulations that include both HWP non-idealities and realistic full-sky beam convolution. Our analysis shows how certain achromatic HWP configurations produce significant systematic polarization angle offsets that vary for sky components with different frequency dependence. Our analysis also demonstrates that once we account for interactions with HWPs, realistic beam models with non-negligible cross-polarization and sidelobes will cause significant B-mode residuals that will have to be extensively modelled in some cases.
  •  
6.
  • Gudmundsson, Jón E., et al. (författare)
  • The Simons Observatory : modeling optical systematics in the Large Aperture Telescope
  • 2021
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 60:4, s. 823-837
  • Tidskriftsartikel (refereegranskat)abstract
    • We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
  •  
7.
  • Monelli, Marta, et al. (författare)
  • Impact of half-wave plate systematics on the measurement of cosmic birefringence from CMB polarization
  • 2023
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2023:03
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarization of the cosmic microwave background (CMB) can probe new parity-violating physics such as cosmic birefringence (CB), which requires exquisite control over instrumental systematics. The non-idealities of the half-wave plate (HWP) represent a source of systematics when used as a polarization modulator. We study their impact on the CMB angular power spectra, which is partially degenerate with CB and miscalibration of the polarization angle. We use full-sky beam convolution simulations including HWP to generate mock noiseless time-ordered data, process them through a bin averaging map-maker, and calculate the power spectra including TB and EB correlations. We also derive analytical formulae which accurately model the observed spectra. For our choice of HWP parameters, the HWP-induced angle amounts to a few degrees, which could be misinterpreted as CB. Accurate knowledge of the HWP is required to mitigate this. Our simulation and analytical formulae will be useful for deriving requirements for the accuracy of HWP calibration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy