SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Damdimopoulos Anastasios) "

Search: WFRF:(Damdimopoulos Anastasios)

  • Result 1-28 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bradley, Frideborg, et al. (author)
  • Multi-omics analysis of the cervical epithelial integrity of women using depot medroxyprogesterone acetate
  • 2022
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 18:5
  • Journal article (peer-reviewed)abstract
    • Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4(+) cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa. Author summarySexual transmission accounts for the majority of all new HIV infections in women, and alterations to the mucosal environment of the female genital tract have been associated with an increase in the risk of acquiring HIV. Observational epidemiological studies have implied that the use of the injectable hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may be associated with increased HIV-acquisition. However, a prospective clinical study has not confirmed this association and the controversial findings are currently evaluated in the context of international reproductive health policies. Several studies using various model systems indicate that DMPA affects the integrity of the genital epithelial barrier as well as the mucosal immune system, but the exact mechanisms remain largely unknown. To characterize the effect of DMPA on the genital mucosal environment, we used a multi-omics approach to assess paired genital secretions and cervical tissue samples from long-term regular DMPA users living in Kenya. This unique cohort represents a population at risk of HIV infection in which DMPA is one of the most commonly used hormonal contraceptives. We identified impaired cervical epithelial barrier structures, including DMPA-associated reduction in the expression of cell-cell adhesion molecules, keratins, small proline-rich proteins and a thinner upper epithelial layer with more superficially located CD4(+) cells. Gene set enrichment pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development including keratinization and cornification pathways. Protein analysis identified altered levels of selected anti-proteases. Our findings illustrate mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.
  •  
2.
  • Burmakin, Mikhail, et al. (author)
  • Pharmacological HIF-PHD inhibition reduces renovascular resistance and increases glomerular filtration by stimulating nitric oxide generation
  • 2021
  • In: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 233:1
  • Journal article (peer-reviewed)abstract
    • AIM: Hypoxia-inducible factors (HIFs) are O2 -sensitive transcription factors that regulate multiple biological processes which are essential for cellular adaptation to hypoxia. Small molecule inhibitors of HIF-prolyl hydroxylase domain (PHD) dioxygenases (HIF-PHIs) activate HIF-dependent transcriptional programs and have broad clinical potential. HIF-PHIs are currently in global late-stage clinical development for the treatment of anaemia associated with chronic kidney disease. Although the effects of hypoxia on renal haemodynamics and function have been studied in animal models and in humans living at high altitude, the effects of pharmacological HIF activation on renal haemodynamics, O2 metabolism and metabolic efficiency are not well understood.METHODS: Using a cross-sectional study design, we investigated renal haemodynamics, O2 metabolism, gene expression and NO production in healthy rats treated with different doses of HIF-PHIs roxadustat or molidustat compared to vehicle control.RESULTS: Systemic administration of roxadustat or molidustat resulted in a dose-dependent reduction in renovascular resistance (RVR). This was associated with increased glomerular filtration rate (GFR), urine flow and tubular sodium transport rate (TNa ). Although both total O2 delivery and TNa were increased, more O2 was extracted per transported sodium in rats treated with high-doses of HIF-PHIs, suggesting a reduction in metabolic efficiency. Changes in RVR and GFR were associated with increased nitric oxide (NO) generation and substantially suppressed by pharmacological inhibition of NO synthesis.CONCLUSIONS: Our data provide mechanistic insights into dose-dependent effects of short-term pharmacological HIF activation on renal haemodynamics, glomerular filtration and O2 metabolism and identify NO as a major mediator of these effects.
  •  
3.
  • Cunnea, Paula M, et al. (author)
  • ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress.
  • 2003
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 278:2, s. 1059-66
  • Journal article (peer-reviewed)abstract
    • A complex array of chaperones and enzymes reside in the endoplasmic reticulum (ER) to assist the folding and assembly of and the disulfide bond formation in nascent secretory proteins. Here we characterize a novel human putative ER co-chaperone (ERdj5) containing domains resembling DnaJ, protein-disulfide isomerase, and thioredoxin domains. Homologs of ERdj5 have been found in Caenorhabditis elegans and Mus musculus. In vitro experiments demonstrated that ERdj5 interacts via its DnaJ domain with BiP in an ATP-dependent manner. ERdj5 is a ubiquitous protein localized in the ER and is particularly abundant in secretory cells. Its transcription is induced during ER stress, suggesting potential roles for ERdj5 in protein folding and translocation across the ER membrane.
  •  
4.
  • Damdimopoulos, Anastasios E., et al. (author)
  • An alternative splicing variant of the selenoprotein thioredoxin reductase is a modulator of estrogen signaling
  • 2004
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 279:37, s. 38721-38729
  • Journal article (peer-reviewed)abstract
    • The selenoprotein thioredoxin reductase (TrxR1) is an integral part of the thioredoxin system. It serves to transfer electrons from NADPH to thioredoxin leading to its reduction. Interestingly, recent work has indicated that thioredoxin reductase can regulate the activity of transcription factors such as p53, hypoxia-inducible factor, and AP-1. Here, we describe that an alternative splicing variant of thioredoxin reductase (TrxR1b) containing an LXXLL peptide motif, is implicated in direct binding to nuclear receptors. In vitro interaction studies revealed direct interaction of the TrxR1b with the estrogen receptors alpha and beta. Confocal microscopy analysis showed nuclear colocalization of the TrxR1b with both estrogen receptor alpha and beta in estradiol-17beta-treated cells. Transcriptional studies demonstrated that TrxR1b can affect estrogen-dependent gene activation differentially at classical estrogen response elements as compared with AP-1 response elements. Based on these results, we propose a model where thioredoxin reductase directly influences the estrogen receptor-coactivator complex assembly on non-classical estrogen response elements such as AP-1. In summary, our results suggest that TrxR1b is an important modulator of estrogen signaling.
  •  
5.
  • Damdimopoulos, Anastasios E., et al. (author)
  • Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death
  • 2002
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 277:36, s. 33249-33257
  • Journal article (peer-reviewed)abstract
    • Thioredoxins (Trx) are a class of small multifunctional redox-active proteins found in all organisms. Recently, we reported the cloning of a mitochondrial thioredoxin, Trx2, from rat heart. To investigate the biological role of Trx2 we have isolated the human homologue, hTrx2, and generated HEK-293 cells overexpressing Trx2 (HEK-Trx2). Here, we show that HEK-Trx2 cells are more resistant toward etoposide. In addition, HEK-Trx2 are more sensitive toward rotenone, an inhibitor of complex I of the respiratory chain. Finally, overexpression of Trx2 confers an increase in mitochondrial membrane potential, DeltaPsi(m). Treatment with oligomycin could both reverse the effect of rotenone and decrease the membrane potential suggesting that Trx2 interferes with the activity of ATP synthase. Taken together, these results suggest that Trx2 interacts with specific components of the mitochondrial respiratory chain and plays an important role in the regulation of the mitochondrial membrane potential.
  •  
6.
  • Damdimopoulos, Anastasios E (author)
  • Identification and functional characterization of novel thioredoxin systems
  • 2003
  • Doctoral thesis (other academic/artistic)abstract
    • Thioredoxins (Trx) are a class of small multifunctional 12-kDa proteins that are characterized by the redox active site Trp-Cys-Gly-Pro-Cys (WCGPC). In the oxidized (inactive) form of Trx (Trx-S2), the two cysteines at the active site form a disulfide bond. This can then be reduced by thioredoxin reductase (TrxR) and NADPH, the so-called thioredoxin system, to a dithiol (Trx-(SH)2), which can then act as a general protein disulfide reductase. Thioredoxins are present in all living organisms and have been isolated and characterized from a wide variety of prokaryotic and eukaryotic cells. In this thesis we describe the identification and functional characterization of novel members of the thioredoxin superfamily. We present evidence for a novel Trx (Trx2) in Escherichia coli. The E. coli Trx2 contains two domains: an N-terminal domain of 32 amino acids containing two CXXC motifs and a C-terminal domain with high homology to the prokaryotic thioredoxins, containing the conserved active site. Trx2 together with TrxR and NADPH can reduce ribonucleotide reductase as well as the interchain disulfide bridges of insulin. Thioredoxins are ubiquitously expressed in an tissues within the same organism. We have identified the first tissue specific Trx (Sptrx1) exclusively expressed in human spermatozoa. Sptrx1 is an active thioredoxin which under native conditions appears to have a multimeric structure. We also identify and characterize a complete thioredoxin system (Trx2, TrxR2) located in mitochondria. We show that Trx2 overexpressing cells have a higher mitochondrial membrane potential that is dependent on the function of the ATP synthase complex. Furthermore, overexpression of Trx2 was found to protect cells against the cytotoxic effects of etoposide, a drug commonly used in anticancer treatment. In addition, we showed that the second compound of the mitochondrial thioredoxin system, TrxR2, is capable of reducing cytochrome c and could protect cells against the cytotoxic effects of antimycin and myxothiazol, chemicals that inhibit the function of complex III in the mitochondrial electron transport chain. Furthemore, we identified an alternative splicing variant of cytosolic thioredoxin reductase (TrxR1b) that could bind to the Estrogen Receptors (ER) alpha and beta. As a result of this binding, a distinct subnuclear localization of TrxR1b was observed, co localizing with both ER alpha and beta. TrxR1b can act as a coactivator and enhance the transcriptional activity of ER in the classical activation pathway, which relies on the binding of the ER to an ER response element on the DNA. By contrast, TrxR1b is a co-repressor in the alternative pathway where ER activates AP-I transcription independently of its DNA binding activity. In summary, the results presented in this thesis give a better understanding of Thioredoxin systems in both prokaryotes and eukaryotes, with the introduction of new members in this redox superfamily of proteins. This study, which shows a wide spectrum of functions for these Thioredoxin systems in influencing various redox mechanisms and processess in biological systems, indicates that there is still a great deal of work yet to be done in this expanding field of research.
  •  
7.
  • Damdimopoulos, Anastasios E., et al. (author)
  • Ligands differentially modify the nuclear mobility of estrogen receptors alpha and beta
  • 2008
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 149:1, s. 339-345
  • Journal article (peer-reviewed)abstract
    • Signaling of nuclear receptors depends on the structure of their ligands, with different ligands eliciting different responses. In this study using a comparative analysis, an array of ligands was examined for effects on estrogen receptor alpha (ERalpha) and ERbeta mobility. Our results indicated that these two receptors share similarities in response to some ligands but differ significantly in response to others. Our results suggest that for ERalpha, ligands can be classified into three distinct groups: 1) ligands that do not affect the mobility of the receptor, 2) ligands that cause a moderate effect, and 3) ligands that strongly impact mobility of ERalpha. Interestingly, we found that for ERbeta such a classification was not possible because ERbeta ligands caused a wider spectrum of responses. One of the main differences between the two receptors was the response toward the antiestrogens ICI and raloxifene, which was not attributable to differential subnuclear localization or different conformations of helix 12 in the C-terminal domain. We showed that both of these ligands caused a robust phenotype, leading to an almost total immobilization of ERalpha, whereas ERbeta retained its mobility; we provide evidence that the mobility of the two receptors depends upon the function of the proteasome machinery. This novel finding that ERbeta retains its mobility in the presence of antiestrogens could be important for its ability to regulate genes that do not contain classic estrogen response element sites and do not require DNA binding and could be used in the investigation of ligands that show ER subtype specificity.
  •  
8.
  • Damdimopoulos, Anastasios E., et al. (author)
  • Nuclear immobilization of DsRed1 tagged proteins : a novel tool for studying DNA-protein interactions?
  • 2007
  • In: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1773:6, s. 687-690
  • Journal article (peer-reviewed)abstract
    • DsRed1 is a red fluorescent protein that can be used as a fusion partner with other proteins to determine their subcellular localization, similarly to the popular green fluorescent proteins (GFP). Here, we report that fusion of DsRed1 to estrogen receptor alpha (ER alpha) renders the transcription factor immobile within the nucleus. Furthermore, we show that the immobilization is dependent on DNA interaction and that the binding to the DNA can be direct as well as indirect for DsRed to immobilize with its fusion partners. This observation could provide a new tool to be used for the identification of target genes containing low affinity binding sites for several transcription factors including ER alpha. In addition, it could be employed for studies on protein-DNA interactions as well as protein-protein interactions during protein complex formation on chromatin in the event of transcription initiation and regulation.
  •  
9.
  • Damdimopoulou, Pauliina, et al. (author)
  • A single dose of enterolactone activates estrogen signaling and regulates expression of circadian clock genes in mice.
  • 2011
  • In: The Journal of nutrition. - : Elsevier BV. - 1541-6100 .- 0022-3166. ; 141:9, s. 1583-9
  • Journal article (peer-reviewed)abstract
    • Enterolactone (EL) is an enterolignan produced by gut microbiota from dietary plant lignans. Epidemiological and experimental studies suggest that EL and plant lignans may reduce the risk of breast and prostate cancer as well as cardiovascular disease. These effects are thought to at least in part involve modulation of estrogen receptor activity. Surprisingly little is known about the in vivo estrogenicity of EL. In the present study, we investigated the target tissues of EL, the genes affected by EL treatment, and the response kinetics. Following a single dose of EL, luciferase was significantly induced in reproductive and nonreproductive tissues of male and female 3xERE-luciferase mice, indicating estrogen-like activity. Microarray analysis revealed that EL regulated the expression of only 1% of 17β-estradiol target genes in the uterus. The majority of these genes were traditional estrogen target genes, but also members of the circadian signaling pathway were affected. Kinetic analyses showed that EL undergoes rapid phase II metabolism and is efficiently excreted. In vivo imaging demonstrated that the estrogen response followed similar, fast kinetics. We conclude that EL activates estrogen signaling in both male and female mice and that the transient responses may be due to the fast metabolism of the compound. Lastly, EL may represent a link among diet, gut microbiota, and circadian signaling.
  •  
10.
  • Erlandsson, Malin, 1972, et al. (author)
  • Survivin promotes a glycolytic switch in CD4+ T cells by suppressing the transcription of PFKFB3 in rheumatoid arthritis.
  • 2022
  • In: iScience. - : Elsevier BV. - 2589-0042. ; 25:12
  • Journal article (peer-reviewed)abstract
    • In this study, we explore the role of nuclear survivin in maintaining the effector phenotype of IFNγ-producing Tcells acting through the transcriptional control of glucose utilization. High expression of survivin in CD4+T cells was associated with IFNγ-dependent phenotype and anaerobic glycolysis. Transcriptome of CD4+ cells and sequencing of survivin-bound chromatin showed that nuclear survivin had a genome-wide and motif-specific binding to regulatory regions of the genes controlling cell metabolism. Survivin coprecipitates with transcription factors IRF1 and SMAD3, which repressed the transcription of the metabolic check-point enzyme phosphofructokinase 2 gene PFKFB3 and promoted anaerobic glycolysis. Combining transcriptome analyses of CD4+ cells and functional studies in glucose metabolism, we demonstrated that the inhibition of survivin reverted PFKFB3 production, inhibited glucose uptake, and reduces interferon effects in CD4+ cells. These results present a survivin-dependent mechanism in coordinating the metabolic adaptation of CD4+T cells and propose an attractive strategy to counteract IFNγ-dependent inflammation in autoimmunity.
  •  
11.
  • Huang, Dan, et al. (author)
  • Estrogen Receptor beta (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens
  • 2022
  • In: Cancers. - : MDPI. - 2072-6694. ; 14:13, s. 3098-
  • Journal article (peer-reviewed)abstract
    • Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-tofemale incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor beta (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell-cell adhesion, endothelial-mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors.
  •  
12.
  • Huang, Dan, et al. (author)
  • Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma-Possible Estrogen Effects
  • 2023
  • In: Cancers. - : MDPI. - 2072-6694. ; 15:4
  • Journal article (peer-reviewed)abstract
    • Simple Summary Females show a favorable sex difference in incidence as well as in survival for many cancer types, so also in lymphoma. The reasons for this are unknown. We have therefore analyzed global gene expression in a large cohort of the most common lymphoma type, diffuse large B-cell lymphoma. We show that many genes are differentially expressed between males and females. Furthermore, the results demonstrate sex-dependent differences in gene expression between DLBCL subtypes. In addition, gene expression differs in pre- vs. postmenopausal women suggesting that estrogen regulation of genes is involved. Thus, estrogens may contribute to the sex and female age differences in incidence and prognosis observed. For most lymphomas, including diffuse large B-cell lymphoma (DLBCL), the male incidence is higher, and the prognosis is worse compared to females. The reasons are unclear; however, epidemiological and experimental data suggest that estrogens are involved. With this in mind, we analyzed gene expression data from a publicly available cohort (EGAD00001003600) of 746 DLBCL samples based on RNA sequencing. We found 1293 genes to be differentially expressed between males and females (adj. p-value < 0.05). Few autosomal genes and pathways showed common sex-regulated expression between germinal center B-cell (GCB) and activated B-cell lymphoma (ABC) DLBCL. Analysis of differentially expressed genes between pre- vs. postmenopausal females identified 208 GCB and 345 ABC genes, with only 5 being shared. When combining the differentially expressed genes between females vs. males and pre- vs. postmenopausal females, nine putative estrogen-regulated genes were identified in ABC DLBCL. Two of them, NR4A2 and MUC5B, showed induced and repressed expression, respectively. Interestingly, NR4A2 has been reported as a tumor suppressor in lymphoma. We show that ABC DLBCL females with a high NR4A2 expression showed better survival. Inversely, MUC5B expression causes a more malignant phenotype in several cancers. NR4A2 and MUC5B were confirmed to be estrogen-regulated when the ABC cell line U2932 was grafted to mice. The results demonstrate sex- and female reproductive age-dependent differences in gene expression between DLBCL subtypes, likely due to estrogens. This may contribute to the sex differences in incidence and prognosis.
  •  
13.
  • Indukuri, Rajitha, et al. (author)
  • An Optimized ChIP-Seq Protocol to Determine Chromatin Binding of Estrogen Receptor Beta.
  • 2022
  • In: Methods in Molecular Biology. - New York, NY : Springer Nature. - 1064-3745 .- 1940-6029. ; 2418, s. 203-221
  • Journal article (peer-reviewed)abstract
    • Estrogen regulates transcription through two nuclear receptors, ERα and ERβ, in a tissue and cellular-dependent manner. Both the receptors bind estrogen and activate transcription through direct or indirect interactions with DNA. Revealing their interactions with the chromatin is key to understanding their transcriptional activities and their biological functions. Chromatin-immunoprecipitation followed by sequencing (ChIP-Seq) is a powerful technique to map protein-DNA interactions at precise genomic locations. The genome-wide binding of ERα has been extensively studied. Similar studies of ERβ, however, have been more difficult, in part due to a lack of endogenous expression in cell lines and lack of specific antibodies. In this chapter, we provide an optimized stepwise ChIP protocol for a well-validated ERβ antibody, which is applicable for ChIP-Seq analysis of cell lines with exogenous expression of ERβ.
  •  
14.
  • Indukuri, Rajitha, et al. (author)
  • Genome-wide estrogen receptor β chromatin binding in humancolon cancer cells reveals its tumor suppressor activity
  • 2021
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215.
  • Journal article (peer-reviewed)abstract
    • Colorectal cancer (CRC) is the third leading cause of cancer death in the western world. In women, menopausal hormone therapy has been shown to reduce CRC incidence by 20%. Studies demonstrate that estrogen activating estrogen receptor beta (ERβ) protects against CRC. ERβ is a nuclear receptor that regulates gene expression through interactions with the chromatin. This molecular mechanism is, however, not well characterized in colon. Here, we present for the first time, the cistrome of ERβ in different colon cancer cell lines. We use cell lines engineered to express ERβ, optimize and validate an ERβ antibody for chromatin-immunoprecipitation (ChIP), and perform ChIP-Seq. We identify key binding motifs, including ERE, AP-1, and TCF sites, and we determine enrichment of binding to cis-regulatory chromatin sites of genes involved in tumor development, cell migration, cell adhesion, apoptosis, and Wnt signaling pathways. We compare the corresponding cistromes of colon and breast cancer and find that they are conserved for about a third of genes, including GREB1, but that ERβ tethering to TCF and KLF family motifs is characteristic for colon. We exemplify upregulation of putative CRC tumor suppressor gene CST5 where ERβ in colon cells binds to cis-regulatory regions nearby (−351 bp) the transcriptional start site. Our work provides a foundation for understanding the mechanism of action of ERβ in CRC prevention.
  •  
15.
  • Kemiläinen, Heidi, et al. (author)
  • The Hydroxysteroid (17β) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility.
  • 2016
  • In: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 157:10, s. 3719-3730
  • Journal article (peer-reviewed)abstract
    • The hydroxysteroid (17beta) dehydrogenase (HSD17B)12 gene belongs to the hydroxysteroid (17β) dehydrogenase superfamily, and it has been implicated in the conversion of estrone to estradiol as well as in the synthesis of arachidonic acid (AA). AA is a precursor of prostaglandins, which are involved in the regulation of female reproduction, prompting us to study the role of HSD17B12 enzyme in the ovarian function. We found a broad expression of HSD17B12 enzyme in both human and mouse ovaries. The enzyme was localized in the theca interna, corpus luteum, granulosa cells, oocytes, and surface epithelium. Interestingly, haploinsufficiency of the HSD17B12 gene in female mice resulted in subfertility, indicating an important role for HSD17B12 enzyme in the ovarian function. In line with significantly increased length of the diestrous phase, the HSD17B(+/-) females gave birth less frequently than wild-type females, and the litter size of HSD17B12(+/-) females was significantly reduced. Interestingly, we observed meiotic spindle formation in immature follicles, suggesting defective meiotic arrest in HSD17B12(+/-) ovaries. The finding was further supported by transcriptome analysis showing differential expression of several genes related to the meiosis. In addition, polyovular follicles and oocytes trapped inside the corpus luteum were observed, indicating a failure in the oogenesis and ovulation, respectively. Intraovarian concentrations of steroid hormones were normal in HSD17B12(+/-) females, whereas the levels of AA and its metabolites (6-keto prostaglandin F1alpha, prostaglandin D2, prostaglandin E2, prostaglandin F2α, and thromboxane B2) were decreased. In conclusion, our study demonstrates that HSD17B12 enzyme plays an important role in female fertility through its role in AA metabolism.
  •  
16.
  • Kvedaraite, Egle, et al. (author)
  • Intestinal stroma guides monocyte differentiation to macrophages through GM-CSF
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142−/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142−/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.
  •  
17.
  • Li, Tianyi, et al. (author)
  • Persistent organic pollutants dysregulate energy homeostasis in human ovaries in vitro
  • 2024
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 187
  • Journal article (peer-reviewed)abstract
    • Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time -to -pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p '-dichlorodiphenyldichloroethylene (DDE), 2,3,3 ' ,4,4 ' ,5-hexachlorobiphenyl (PCB156), 2,2 ' ,3,4,4 ' ,5,5 ' -heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro . We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA -sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase ( ENO1 ), lactate dehydrogenase A ( LDHA ), cytochrome C oxidase subunit 4I1 ( COX4I1 ), ATP synthase F1 subunit alpha ( ATP5A ), and glutathione peroxidase 4 ( GPX4 ) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP -mediated interference of follicle growth in human ovaries.
  •  
18.
  • Madeja, Zbigniew, et al. (author)
  • The role of thioredoxin reductase activity in selenium-induced cytotoxicity
  • 2005
  • In: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839. ; 69:12, s. 1765-1772
  • Journal article (peer-reviewed)abstract
    • The selenoprotein thioredoxin reductase is a key enzyme in selenium metabolism, reducing selenium compounds and thereby providing selenide to synthesis of all selenoproteins. We evaluated the importance of active TrxR1 in selenium-induced cytotoxicity using transfected TrxR1 over-expressing stable Human Embryo Kidney (HEK-293) cells and modulation of activity by pretreatment with low concentration of selenite. Treatment with sodium selenite induced cytotoxity in a dose-dependent manner in both TrxR1 over-expressing and control cells. However, TrxR1 over-expressing cells, which were preincubated for 72h with 0.1 microM selenite, were significantly more resistant to selenite cytotoxicity than control cells. To demonstrate the early effects of selenite on behaviour of HEK-293 cells, we also investigated the influence of this compound on cell motility. We observed inhibition of cell motility by 50 microM selenite immediately after administration. Moreover, TrxR1 over-expressing cells preincubated with a low concentration of selenite were more resistant to the inhibitory effect of 50 microM selenite than those not preincubated. It was also observed that the TrxR over-expressing cells showed higher TrxR1 activity than control cells and the preincubation of over-expressing cells with 0.1 microM selenite induced further significant increase in the activity of TrxR1. On the other hand, we demonstrated that TrxR1 over-expressing cells showed decreased glutathione peroxidase activity compared to control cells. These data strongly suggest that TrxR1 may be a crucial enzyme responsible for cell resistance against selenium cytotoxicity.
  •  
19.
  • Miranda-Vizuete, Antonio, et al. (author)
  • cDNA cloning, expression and chromosomal localization of the mouse mitochondrial thioredoxin reductase gene(1)
  • 1999
  • In: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1447:1, s. 113-118
  • Journal article (peer-reviewed)abstract
    • Cytosolic thioredoxin (Trx) and thioredoxin reductase (TrxR) comprise a ubiquitous system that uses the reducing power of NADPH to act as a general disulfide reductase system as well as a potent antioxidant system. Human and rat mitochondria contain a complete thioredoxin system different from the one present in the cytosol. The mitochondrial system is involved in the oxidative stress protection through a mitochondrial thioredoxin-dependent peroxidase. We report here the cDNA cloning and chromosomal localization of the mouse mitochondrial thioredoxin reductase gene (TrxR2). The mouse TrxR2 cDNA encodes for a putative protein of 527 amino acid residues with a calculated molecular mass of 57 kDa, that displays high homology with the human and rat counterparts. The N-terminus of the protein displays typical features of a mitochondrial targeting sequence with absence of acidic residues and abundance of basic residues. Mouse TrxR2 also contains a stop codon in frame at the C-terminus of the protein, necessary for the incorporation of selenocysteine that is required for enzymatic activity. The typical stem-loop structure (SECIS element) that drives the incorporation of selenocysteine is identified in the 3'-UTR. Northern analysis of the mouse TrxR2 mRNA shows a similar pattern of expression with the human homologue, with higher expression in liver, heart and kidney. Finally, we have assigned the mouse TrxR2 gene to chromosome 16 mapping at 11.2 cM from the centromer and linked to the catechol-o-methyltransferase (comt) gene.
  •  
20.
  • Miranda-Vizuete, Antonio, et al. (author)
  • Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa
  • 2001
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 276:34, s. 31567-31574
  • Journal article (peer-reviewed)abstract
    • Thioredoxins (Trx) are small ubiquitous proteins that participate in different cellular processes via redox-mediated reactions. We report here the identification and characterization of a novel member of the thioredoxin family in humans, named Sptrx (sperm-specific trx), the first with a tissue-specific distribution, located exclusively in spermatozoa. Sptrx open reading frame encodes for a protein of 486 amino acids composed of two clear domains: an N-terminal domain consisting of 23 highly conserved repetitions of a 15-residue motif and a C-terminal domain typical of thioredoxins. Northern analysis and in situ hybridization shows that Sptrx mRNA is only expressed in human testis, specifically in round and elongating spermatids. Immunostaining of human testis sections identified Sptrx protein in spermatids, while immunofluorescence and immunogold electron microscopy analysis demonstrated Sptrx localization in the cytoplasmic droplet of ejaculated sperm. Sptrx appears to have a multimeric structure in native conditions and is able to reduce insulin disulfide bonds in the presence of NADPH and thioredoxin reductase. During mammalian spermiogenesis in testis seminiferous tubules and later maturation in epididymis, extensive reorganization of disulfide bonds is required to stabilize cytoskeletal sperm structures. However, the molecular mechanisms that control these processes are not known. The identification of Sptrx with an expression pattern restricted to the postmeiotic phase of spermatogenesis, when the sperm tail is organized, suggests that Sptrx might be an important factor in regulating critical steps of human spermiogenesis.
  •  
21.
  • Miranda-Vizuete, Antonio, et al. (author)
  • The mitochondrial thioredoxin system
  • 2000
  • In: Antioxidants and Redox Signaling. - : Mary Ann Liebert. - 1523-0864 .- 1557-7716. ; 2:4, s. 801-810
  • Journal article (peer-reviewed)abstract
    • Eukaryotic organisms from yeast to human possess a mitochondrial thioredoxin system composed of thioredoxin and thioredoxin reductase, similar to the cytosolic thioredoxin system that exists in the same cells. Yeast and mammalian mitochondrial thioredoxins are monomers of approximately 12 kDa and contain the typical conserved active site WCGPC. However, there are important differences between yeast and mammalian mitochondrial thioredoxin reductases that resemble the differences between their cytosolic counterparts. Mammalian mitochondrial thioredoxin reductase is a selenoprotein that forms a homodimer of 55 kDa/subunit; while yeast mitochondrial thioredoxin reductase is a homodimer of 37 kDa/subunit and does not contain selenocysteine. A function of the mitochondrial thioredoxin system is as electron donor for a mitochondrial peroxiredoxin, an enzyme that detoxifies the hydrogen peroxide generated by the mitochondrial metabolism. Experiments with yeast mutants lacking both the mitochondrial thioredoxin system as well as the mitochondrial peroxiredoxin system suggest an important role for mitochondrial thioredoxin, thioredoxin reductase, and peroxiredoxin in the protection against oxidative stress.
  •  
22.
  • Mätlik, Kärt, et al. (author)
  • Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia.
  • 2022
  • In: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578.
  • Journal article (peer-reviewed)abstract
    • Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
  •  
23.
  • Nalvarte, Ivan, et al. (author)
  • Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition
  • 2004
  • In: Free Radical Biology & Medicine. - : Elsevier. - 0891-5849 .- 1873-4596. ; 36:10, s. 1270-1278
  • Journal article (peer-reviewed)abstract
    • The ubiquitously expressed mammalian thioredoxin reductases are selenoproteins that together with NADPH regenerate active reduced thioredoxins and are involved in diverse actions mediated by redox control. Two main forms of mammalian thioredoxin reductases have been isolated, one cytosolic (TrxR1) and one present in mitochondria (TrxR2). Although the principal target for TrxRs is thioredoxin, the cytosolic form can regenerate several important antioxidants such as ascorbic acid, lipoic acid, and ubiquinone. In this study we demonstrate that cytochrome c is a substrate for both TrxR1 and TrxR2. In addition, cells overexpressing TrxR2 are more resistant to impairment of complex III in the mitochondrial respiratory chain upon both antimycin A and myxothiazol treatments, suggesting a complex III bypassing function of TrxR2. Furthermore, we show that cytochrome c is reduced by TrxR2 in vitro, not only by using NADPH as an electron donor but also by using NADH, pointing at TrxR2 as an important redox protein on complex III impairment. These findings may be valuable in understanding respiratory disorders in mitochondrial diseases.
  •  
24.
  • Nalvarte, Ivan, et al. (author)
  • Overexpression of enzymatically active human cytosolic and mitochondrial thioredoxin reductase in HEK-293 cells : Effect on cell growth and differentiation
  • 2004
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 279:52, s. 54510-54517
  • Journal article (peer-reviewed)abstract
    • The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.
  •  
25.
  • Nalvarte, Ivan, et al. (author)
  • The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion
  • 2015
  • In: Bioscience Reports. - : PORTLAND PRESS LTD. - 0144-8463 .- 1573-4935. ; 35:e00269
  • Journal article (peer-reviewed)abstract
    • The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510-54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1.
  •  
26.
  • Sadek, Christine M., et al. (author)
  • Characterization of human thioredoxin-like 2. A novel microtubule-binding thioredoxin expressed predominantly in the cilia of lung airway epithelium and spermatid manchette and axoneme
  • 2003
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 278:15, s. 13133-13142
  • Journal article (peer-reviewed)abstract
    • We describe here the cloning and characterization of a novel member of the thioredoxin family, thioredoxin-like protein 2 (Txl-2). The Txl-2 open reading frame codes for a protein of 330 amino acids consisting of two distinct domains: an N-terminal domain typical of thioredoxins and a C-terminal domain belonging to the nucleoside-diphosphate kinase family, separated by a small interface domain. The Txl-2 gene spans approximately 28 kb, is organized into 11 exons, and maps at locus 3q22.3-q23. A splicing variant lacking exon 5 (Delta 5Txl-2) has also been isolated. By quantitative real time PCR we demonstrate that Txl-2 mRNA is ubiquitously expressed, with testis and lung having the highest levels of expression. Unexpectedly, light and electron microscopy analyses show that the protein is associated with microtubular structures such as lung airway epithelium cilia and the manchette and axoneme of spermatids. Using in vitro translated proteins, we demonstrate that full-length Txl-2 weakly associates with microtubules. In contrast, Delta 5Txl-2 specifically binds with very high affinity brain microtubule preparations containing microtubule-binding proteins. Importantly, Delta 5Txl-2 also binds to pure microtubules, proving that it possesses intrinsic microtubule binding capability. Taken together, Delta 5Txl-2 is the first thioredoxin reported to bind microtubules and might therefore be a novel regulator of microtubule physiology.
  •  
27.
  • Tarvainen, Ilari, et al. (author)
  • Identification of phthalate mixture exposure targets in the human and mouse ovary in vitro
  • 2023
  • In: Reproductive Toxicology. - : Elsevier. - 0890-6238 .- 1873-1708. ; 119
  • Journal article (peer-reviewed)abstract
    • Chemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard charac-terization and risk assessment are open questions. Further, test systems are missing for several relevant health outcomes including reproductive health and fertility in women. Here, our aim was to screen multiple ovarian cell models for phthalate induced effects to identify biomarkers of exposure. We used an epidemiological cohort study to define different phthalate mixtures for in vitro testing. The mixtures were then tested in five cell models representing ovarian granulosa or stromal cells, namely COV434, KGN, primary human granulosa cells, primary mouse granulosa cells, and primary human ovarian stromal cells. Exposures at epidemiologically relevant levels did not markedly elicit cytotoxicity or affect steroidogenesis in short 24-hour exposure. However, significant effects on gene expression were identified by RNA-sequencing. Altogether, the exposures changed the expression of 124 genes on the average (9-479 genes per exposure) in human cell models, without obvious concentration or mixture-dependent effects on gene numbers. The mixtures stimulated distinct changes in different cell models. Despite differences, our analyses suggest commonalities in responses towards phthalates, which forms a starting point for follow-up studies on identification and validation of candidate biomarkers that could be developed to novel assays for regulatory testing or even into clinical tests.
  •  
28.
  • Turunen, Heikki T, et al. (author)
  • Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors.
  • 2011
  • In: Reproductive biology and endocrinology : RB&E. - : Springer Science and Business Media LLC. - 1477-7827. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Spermatozoa leaving the testis are not able to fertilize the egg in vivo. They must undergo further maturation in the epididymis. Proteins secreted to the epididymal lumen by the epithelial cells interact with the spermatozoa and enable these maturational changes, and are responsible for proper storage conditions before ejaculation. The present study was carried out in order to characterize the expression of a novel Pate (prostate and testis expression) gene family, coding for secreted cysteine-rich proteins, in the epididymis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-28 of 28
Type of publication
journal article (27)
doctoral thesis (1)
Type of content
peer-reviewed (27)
other academic/artistic (1)
Author/Editor
Spyrou, Giannis (12)
Damdimopoulou, Pauli ... (4)
Poutanen, Matti (3)
Berglund, Mattias (2)
Lindskog, Cecilia (2)
Strauss, Leena (2)
show more...
Björnstedt, Mikael (2)
Aittokallio, Tero (1)
Amini, Rose-Marie (1)
Olovsson, Matts, 195 ... (1)
Archer, A. (1)
Nilsson, Peter (1)
Enblad, Gunilla (1)
Sellgren, Carl M (1)
Kimani, Joshua (1)
Kere, Juha (1)
Davis, Elaine C. (1)
Hovatta, Outi (1)
Huhtaniemi, Ilpo (1)
Ohlsson, Claes, 1965 (1)
Bokarewa, Maria, 196 ... (1)
Svensson, Mattias (1)
Jorns, Carl (1)
Erhardt, Sophie (1)
Piehl, Fredrik (1)
Salumets, Andres (1)
Kieselbach, Thomas (1)
Spyrou, Ioannis (1)
Garcia-Bonete, Maria ... (1)
Katona, Gergely, 197 ... (1)
Henter, Jan-Inge (1)
Erlandsson, Malin, 1 ... (1)
Padhi, Avinash (1)
Cervenka, Simon (1)
Moll, Kirsten (1)
Jakobsson, Johan (1)
Huang, Zhiqiang (1)
Nurmi, Tarja (1)
Rüegg, Joelle (1)
Mäkelä, Sari (1)
Månberg, Anna, 1985- (1)
Adamski, Jerzy (1)
Gustafsson, Jan-Ake (1)
Li, Zhong (1)
Lourda, Magda (1)
Burmakin, Mikhail (1)
Pekna, Marcela, 1966 (1)
Andersson, Karin, 19 ... (1)
Silfverswärd, Sofia ... (1)
Buggert, Marcus (1)
show less...
University
Karolinska Institutet (27)
Linköping University (13)
Royal Institute of Technology (5)
Uppsala University (5)
University of Gothenburg (4)
Stockholm University (2)
show more...
Lund University (1)
Södertörn University (1)
show less...
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (15)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view