SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Damdimopoulou A) "

Sökning: WFRF:(Damdimopoulou A)

  • Resultat 1-40 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Caporale, N., et al. (författare)
  • From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375:6582
  • Tidskriftsartikel (refereegranskat)abstract
    • Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay. © 2022 American Association for the Advancement of Science. All rights reserved.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Hao, J., et al. (författare)
  • Culture of human ovarian tissue in xeno-free conditions using laminin components of the human ovarian extracellular matrix
  • 2020
  • Ingår i: Journal of Assisted Reproduction and Genetics. - : Springer. - 1058-0468 .- 1573-7330. ; 37, s. 2137-2150
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Our purpose was to identify human ovarian extracellular matrix (ECM) components that would support in vitro culture of human ovarian tissue and be compatible with possible future clinical applications. We characterized ovarian expression of laminins and selected three laminin tripeptides for culture experiments to be compared with Matrigel, an undefined and animal-based mixture of ECM components. Methods: Expression of the 12 laminin genes was determined on transcript and protein levels using cortical tissue samples (n = 6), commercial ovary RNA (n = 1), follicular fluid granulosa cells (n = 20), and single-cell RNA-sequencing data. Laminin 221 (LN221), LN521, LN511, and their mixture were chosen for a 7-day culture experiment along with Matrigel using tissue from 17 patients. At the end of the culture, follicles were evaluated by scoring and counting from serial tissue sections, apoptosis measured using in situ TUNEL assay, proliferation by Ki67 staining, and endocrine function by quantifying steroids in culture media using UPLC-MS/MS. Results: Approximately half of the cells in ovarian cortex expressed at least one laminin gene. The overall most expressed laminin α-chains were LAMA2 and LAMA5, β-chains LAMB1 and LAMB2, and γ-chain LAMC1. In culture experiments, LN221 enhanced follicular survival compared with Matrigel (p < 0.001), whereas tissue cultured on LN521 had higher proportion of secondary follicles (p < 0.001). LN511 and mixture of laminins did not support the cultures leading to lower follicle densities and higher apoptosis. All cultures produced steroids and contained proliferating cells. Conclusions: LN221 and LN521 show promise in providing xeno-free growth substrates for human ovarian tissue cultures, which may help in further development of folliculogenesis in vitro for clinical practices. The system could also be used for identification of adverse effects of chemicals in ovaries.
  •  
11.
  •  
12.
  •  
13.
  • Tarvainen, Ilari, et al. (författare)
  • Identification of phthalate mixture exposure targets in the human and mouse ovary in vitro
  • 2023
  • Ingår i: Reproductive Toxicology. - : Elsevier. - 0890-6238 .- 1873-1708. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard charac-terization and risk assessment are open questions. Further, test systems are missing for several relevant health outcomes including reproductive health and fertility in women. Here, our aim was to screen multiple ovarian cell models for phthalate induced effects to identify biomarkers of exposure. We used an epidemiological cohort study to define different phthalate mixtures for in vitro testing. The mixtures were then tested in five cell models representing ovarian granulosa or stromal cells, namely COV434, KGN, primary human granulosa cells, primary mouse granulosa cells, and primary human ovarian stromal cells. Exposures at epidemiologically relevant levels did not markedly elicit cytotoxicity or affect steroidogenesis in short 24-hour exposure. However, significant effects on gene expression were identified by RNA-sequencing. Altogether, the exposures changed the expression of 124 genes on the average (9-479 genes per exposure) in human cell models, without obvious concentration or mixture-dependent effects on gene numbers. The mixtures stimulated distinct changes in different cell models. Despite differences, our analyses suggest commonalities in responses towards phthalates, which forms a starting point for follow-up studies on identification and validation of candidate biomarkers that could be developed to novel assays for regulatory testing or even into clinical tests.
  •  
14.
  • van Duursen, MBM, et al. (författare)
  • Safeguarding Female Reproductive Health against Endocrine Disrupting Chemicals-The FREIA Project
  • 2020
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 21:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women’s reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman’s reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.
  •  
15.
  •  
16.
  • Argyraki, M, et al. (författare)
  • In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health
  • 2019
  • Ingår i: Human reproduction update. - : Oxford University Press (OUP). - 1460-2369 .- 1355-4786. ; 25:6, s. 777-801
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUNDGenomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes.OBJECTIVE AND RATIONALEOur objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed.SEARCH METHODSA PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review.OUTCOMESIGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic–pituitary–adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals.WIDER IMPLICATIONSDysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
  •  
17.
  •  
18.
  • Di Nisio, V, et al. (författare)
  • In vivo and in vitro postovulatory aging: when time works against oocyte quality?
  • 2022
  • Ingår i: Journal of assisted reproduction and genetics. - : Springer Science and Business Media LLC. - 1573-7330 .- 1058-0468. ; 39:4, s. 905-918
  • Tidskriftsartikel (refereegranskat)abstract
    • In mammalian species an optimal fertilization window during which successful fertilization occurs. In the majority of mammals estrus marks ovulation time and coincident with mating, thereby allowing the synchronized meeting in the fallopian tubes, between freshly ejaculated sperm and freshly ovulated oocytes. Conversely, women do not show natural visual signs of ovulation such that fertilization can occur hours later involving an aged oocyte and freshly ejaculated spermatozoa. During this time, the oocyte undergoes a rapid degradation known as “postovulatory aging” (POA). POA may become particularly important in the human-assisted reproductive technologies, as the fertilization of retrieved mature oocytes can be delayed due to increased laboratory workload or because of unforeseeable circumstances, like the delayed availability of semen samples. This paper is an updated review of the consequences of POA, either in vivo or in vitro, on oocyte quality with particular attention to modifications caused by POA on oocyte nuclear, cytoplasmic, genomic, and epigenetic maturation, and embryo development.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Madissoon, E, et al. (författare)
  • Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 8411-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pleomorphic adenoma gene 1 (PLAG1) is a transcription factor involved in cancer and growth. We discovered a de novo DNA motif containing a PLAG1 binding site in the promoters of genes activated during zygotic genome activation (ZGA) in human embryos. This motif was located within an Alu element in a region that was conserved in the murine B1 element. We show that maternally provided Plag1 is needed for timely mouse preimplantation embryo development. Heterozygous mouse embryos lacking maternal Plag1 showed disrupted regulation of 1,089 genes, spent significantly longer time in the 2-cell stage, and started expressing Plag1 ectopically from the paternal allele. The de novo PLAG1 motif was enriched in the promoters of the genes whose activation was delayed in the absence of Plag1. Further, these mouse genes showed a significant overlap with genes upregulated during human ZGA that also contain the motif. By gene ontology, the mouse and human ZGA genes with de novo PLAG1 motifs were involved in ribosome biogenesis and protein synthesis. Collectively, our data suggest that PLAG1 affects embryo development in mice and humans through a conserved DNA motif within Alu/B1 elements located in the promoters of a subset of ZGA genes.
  •  
27.
  • Méar, Loren, et al. (författare)
  • Transcriptomics and Spatial Proteomics for Discovery and Validation of Missing Proteins in the Human Ovary
  • 2024
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 23:1, s. 238-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to understand the complexities of human biology encompass multidimensional aspects, with proteins emerging as crucial components. However, studying the human ovary introduces unique challenges due to its complex dynamics and changes over a lifetime, varied cellular composition, and limited sample access. Here, four new RNA-seq samples of ovarian cortex spanning ages of 7 to 32 were sequenced and added to the existing data in the Human Protein Atlas (HPA) database www.proteinatlas.org, opening the doors to unique possibilities for exploration of oocyte-specific proteins. Based on transcriptomics analysis of the four new tissue samples representing both prepubertal girls and women of fertile age, we selected 20 protein candidates that lacked previous evidence at the protein level, so-called "missing proteins" (MPs). The proteins were validated using high-resolution antibody-based profiling and single-cell transcriptomics. Fourteen proteins exhibited consistent single-cell expression patterns in oocytes and granulosa cells, confirming their presence in the ovary and suggesting that these proteins play important roles in ovarian function, thus proposing that these 14 proteins should no longer be classified as MPs. This research significantly advances the understanding of MPs, unearthing fresh avenues for prospective exploration. By integrating innovative methodologies and leveraging the wealth of data in the HPA database, these insights contribute to refining our understanding of protein roles within the human ovary and opening the doors for further investigations into missing proteins and human reproduction.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Rodin, S, et al. (författare)
  • Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment
  • 2014
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 3195-
  • Tidskriftsartikel (refereegranskat)abstract
    • Lack of robust methods for establishment and expansion of pluripotent human embryonic stem (hES) cells still hampers development of cell therapy. Laminins (LN) are a family of highly cell-type specific basement membrane proteins important for cell adhesion, differentiation, migration and phenotype stability. Here we produce and isolate a human recombinant LN-521 isoform and develop a cell culture matrix containing LN-521 and E-cadherin, which both localize to stem cell niches in vivo. This matrix allows clonal derivation, clonal survival and long-term self-renewal of hES cells under completely chemically defined and xeno-free conditions without ROCK inhibitors. Neither LN-521 nor E-cadherin alone enable clonal survival of hES cells. The LN-521/E-cadherin matrix allows hES cell line derivation from blastocyst inner cell mass and single blastomere cells without a need to destroy the embryo. This method can facilitate the generation of hES cell lines for development of different cell types for regenerative medicine purposes.
  •  
32.
  • Wagner, M, et al. (författare)
  • Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 1147-
  • Tidskriftsartikel (refereegranskat)abstract
    • The human ovary orchestrates sex hormone production and undergoes monthly structural changes to release mature oocytes. The outer lining of the ovary (cortex) has a key role in defining fertility in women as it harbors the ovarian reserve. It has been postulated that putative oogonial stem cells exist in the ovarian cortex and that these can be captured by DDX4 antibody isolation. Here, we report single-cell transcriptomes and cell surface antigen profiles of over 24,000 cells from high quality ovarian cortex samples from 21 patients. Our data identify transcriptional profiles of six main cell types; oocytes, granulosa cells, immune cells, endothelial cells, perivascular cells, and stromal cells. Cells captured by DDX4 antibody are perivascular cells, not oogonial stem cells. Our data do not support the existence of germline stem cells in adult human ovaries, thereby reinforcing the dogma of a limited ovarian reserve.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-40 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy