SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Damm Wolfgang) "

Sökning: WFRF:(Damm Wolfgang)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grinberg, Marianna, et al. (författare)
  • Toxicogenomics directory of chemically exposed human hepatocytes
  • 2014
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 1432-0738 .- 0340-5761. ; 88:12, s. 2261-2287
  • Tidskriftsartikel (refereegranskat)abstract
    • A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory (http://wiki.toxbank.net/toxicogenomics-map/) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.
  •  
2.
  • Godoy, Patricio, et al. (författare)
  • Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells
  • 2015
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 63:4, s. 934-942
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: The differentiation of stem cells to hepatocyte-like cells (HLC) offers the perspective of unlimited supply of human hepatocytes. However, the degree of differentiation of HLC remains controversial. To obtain an unbiased characterization, we performed a transcriptomic study with HLC derived from human embryonic and induced stem cells (ESC, hiPSC) from three different laboratories.METHODS: Genome-wide gene expression profiles of ESC and HLC were compared to freshly isolated and up to 14days cultivated primary human hepatocytes. Gene networks representing successful and failed hepatocyte differentiation, and the transcription factors involved in their regulation were identified.RESULTS: Gene regulatory network analysis demonstrated that HLC represent a mixed cell type with features of liver, intestine, fibroblast and stem cells. The "unwanted" intestinal features were associated with KLF5 and CDX2 transcriptional networks. Cluster analysis identified highly correlated groups of genes associated with mature liver functions (n=1057) and downregulated proliferation associated genes (n=1562) that approach levels of primary hepatocytes. However, three further clusters containing 447, 101, and 505 genes failed to reach levels of hepatocytes. Key TF of two of these clusters include SOX11, FOXQ1, and YBX3. The third unsuccessful cluster, controlled by HNF1, CAR, FXR, and PXR, strongly overlaps with genes repressed in cultivated hepatocytes compared to freshly isolated hepatocytes, suggesting that current in vitro conditions lack stimuli required to maintain gene expression in hepatocytes, which consequently also explains a corresponding deficiency of HLC.CONCLUSIONS: The present gene regulatory network approach identifies key transcription factors which require modulation to improve HLC differentiation.
  •  
3.
  • Godoy, Patricio, et al. (författare)
  • Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME
  • 2013
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 87:8, s. 1315-1530
  • Forskningsöversikt (refereegranskat)abstract
    • This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4 alpha, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4 alpha), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
  •  
4.
  •  
5.
  • Herrholz, Andreas, et al. (författare)
  • The ANDRES Project : Analysis and Design of run-time Reconfigurable, heterogeneous Systems
  • 2007
  • Ingår i: Proceedings - 2007 International Conference on Field Programmable Logic and Applications, FPL. - : IEEE. - 9781424410606 - 1424410606 ; , s. 396-401
  • Konferensbidrag (refereegranskat)abstract
    • Today's heterogeneous embedded systems combine components from different domains, such as software, analogue hardware and digital hardware. The design and implementation of these systems is still a complex and error-prone task due to the different Models of Computations (MoCs), design languages and tools associated with each of the domains. Though making such systems adaptive is technologically feasible, most of the current design methodologies do not explicitely support adaptive architectures. This paper present the ANDRES project. The main objective of ANDRES is the development of a seamless design flow for adaptive heterogeneous embedded systems (AHES) based on the modelling language SystemC. Using domain-specific modelling extensions and libraries, ANDRES will provide means to efficiently use and exploit adaptivity in embedded system design. The design flow is completed by a methodology and tools for automatic hardware and software synthesis for adaptive architectures.
  •  
6.
  • Roos, Katarina, et al. (författare)
  • OPLS3e : Extending Force Field Coverage for Drug-Like Small Molecules
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:3, s. 1863-1874
  • Tidskriftsartikel (refereegranskat)abstract
    • Building upon the OPLS3 force field we report on an enhanced model, OPLS3e, that further extends its coverage of medicinally relevant chemical space by addressing limitations in chemotype transferability. OPLS3e accomplishes this by incorporating new parameter types that recognize moieties with greater chemical specificity and integrating an on-the-fly parametrization approach to the assignment of partial charges. As a consequence, OPLS3e leads to greater accuracy against performance benchmarks that assess small molecule conformational propensities, solvation, and protein-ligand binding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (3)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Hengstler, Jan G. (3)
Godoy, Patricio (3)
Widera, Agata (3)
Jantsch, Axel (2)
Sander, Ingo (2)
Rogiers, Vera (2)
visa fler...
Vinken, Mathieu (2)
Sachinidis, Agapios (2)
Schmidt-Heck, Wolfga ... (2)
Mardinoglu, Adil, 19 ... (1)
Mwinyi, Jessica (1)
Gustavsson, Lena (1)
Kullak-Ublick, Gerd ... (1)
Chen, Wei (1)
Park, B Kevin (1)
Björquist, Petter (1)
Edlund, Karolina (1)
Carmo, Helena (1)
Sugiyama, Yuichi (1)
Synnergren, Jane (1)
Asplund, Annika (1)
Küppers-Munther, Bar ... (1)
Edlund, K. (1)
Naisbitt, Dean J. (1)
Lu, Peng (1)
Wink, Steven (1)
Kleinjans, Jos C.S. (1)
Hayward, Adam (1)
van de Water, Bob (1)
Braeuning, Albert (1)
Pampaloni, Francesco (1)
Schwarz, Michael (1)
Bode, Johannes Georg (1)
Leist, Marcel (1)
Nüssler, Andreas K. (1)
Dahlgren, Markus K (1)
Vanhaecke, Tamara (1)
Houston, J. Brian (1)
Madjar, Katrin (1)
Rahnenfuehrer, Joerg (1)
Grinberg, Marianna (1)
Campos, Gisela (1)
Merfort, Irmgard (1)
Camussi, Giovanni (1)
Keitel, Verena (1)
Arbo, Marcelo D. (1)
Dooley, Steven (1)
Natarajan, Karthick (1)
Lucendo-Villarin, Ba ... (1)
Szkolnicka, Dagmara (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (2)
Uppsala universitet (1)
Lunds universitet (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (2)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy