SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Danielson U. Helena Professor 1959 ) "

Sökning: WFRF:(Danielson U. Helena Professor 1959 )

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Al-Amin, Rasel A., Researcher, 1983-, et al. (författare)
  • Monitoring drug–target interactions through target engagement-mediated amplification on arrays and in situ
  • 2022
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 50:22, s. e129-e129
  • Tidskriftsartikel (refereegranskat)abstract
    • Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug–target interactions at spatial resolution in protein arrays, cells and in tissues.
  •  
3.
  • Al-Amin, Rasel Abdullah, Researcher, 1983-, et al. (författare)
  • Sensitive protein detection using site-specifically oligonucleotide-conjugated nanobody reagents
  • 2022
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 98:28, s. 10054-10061
  • Tidskriftsartikel (refereegranskat)abstract
    • High-quality affinity probes are critical for sensitive and specific protein detection, in particular for detection of protein biomarkers in the early phases of disease development. Proximity extension assays (PEAs) have been used for high-throughput multiplexed protein detection of up to a few thousand different proteins in one or a few microliters of plasma. Clonal affinity reagents can offer advantages over the commonly used polyclonal antibodies (pAbs) in terms of reproducibility and standardization of such assays. Here, we explore nanobodies (Nbs) as an alternative to pAbs as affinity reagents for PEA. We describe an efficient site-specific approach for preparing high-quality oligo-conjugated Nb probes via enzyme coupling using Sortase A (SrtA). The procedure allows convenient removal of unconjugated affinity reagents after conjugation. The purified high-grade Nb probes were used in PEA, and the reactions provided an efficient means to select optimal pairs of binding reagents from a group of affinity reagents. We demonstrate that Nb-based PEA (nano-PEA) for interleukin-6 (IL6) detection can augment assay performance, compared to the use of pAb probes. We identify and validate Nb combinations capable of binding in pairs without competition for IL6 antigen detection by PEA.
  •  
4.
  • Al-Amin, Rasel A., 1983-, et al. (författare)
  • Target Engagement-Mediated Amplification for Monitoring Drug-Target Interactions in Situ
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • It is important to determine the localization of drugs or drug candidates at cellular and subcellular resolution in relevant clinical specimens. This is necessary to evaluate drug candidates from early stages of drug development to clinical evaluation of mutations potentially causing resistance to targeted therapy. We describe a technology where oligonucleotide-conjugated drug molecules are used to visualize and measure target engagement in situ via rolling-circle amplification (RCA) of circularized oligonucleotide probes (padlock probes). We established this target engagement-mediated amplification (TEMA) technique using kinase inhibitor precursor compounds, and we applied the assay to investigate target interactions by microscopy in pathology tissue sections and using flow cytometry for blood samples from patients, as well as in commercial arrays including almost half of all human proteins.  In the variant proxTEMAtechnique, in situ proximity ligation assays were performed by combining drug-DNA conjugates with antibody-DNA conjugates to specifically reveal drug binding to particular on- or off-targets in pathological tissues sections. In conclusion, the TEMA methods successfully visualize drug-target interaction by experimental and clinically approved kinase inhibitors in situ and with kinases among a large collection of arrayed proteins. 
  •  
5.
  • Belfrage, Anna Karin, 1977-, et al. (författare)
  • Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffold
  • 2018
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier. - 0223-5234 .- 1768-3254. ; 148, s. 453-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors and show that elongated R-3 urea substituents were associated with increased inhibitory potencies over several NS3 protein variants. The inhibitors are believed to rely on beta-sheet mimicking hydrogen bonds which are similar over different genotypes and current drug resistant variants and correspond to the beta-sheet interactions of the natural peptide substrate. Inhibitor 36, for example, with a urea substituent including a cyclic imide showed balanced nanomolar inhibitory potencies against genotype la, both wild-type (K-i=30 nM) and R155K (K-i=2 nM), and genotype 3a (K-i=5 nM).
  •  
6.
  • Cederfelt, Daniela, et al. (författare)
  • The Allosteric Regulation of Β-Ureidopropionase Depends on Fine-Tuned Stability of Active-Site Loops and Subunit Interfaces
  • 2023
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The activity of β-ureidopropionase, which catalyses the last step in the degradation of uracil, thymine, and analogous antimetabolites, is cooperatively regulated by the substrate and product of the reaction. This involves shifts in the equilibrium of the oligomeric states of the enzyme, but how these are achieved and result in changes in enzyme catalytic competence has yet to be determined. Here, the regulation of human β-ureidopropionase was further explored via site-directed mutagenesis, inhibition studies, and cryo-electron microscopy. The active-site residue E207, as well as H173 and H307 located at the dimer-dimer interface, are shown to play crucial roles in enzyme activation. Dimer association to larger assemblies requires closure of active-site loops, which positions the catalytically crucial E207 stably in the active site. H173 and H307 likely respond to ligand-induced changes in their environment with changes in their protonation states, which fine-tunes the active-site loop stability and the strength of dimer-dimer interfaces and explains the previously observed pH influence on the oligomer equilibrium. The correlation between substrate analogue structure and effect on enzyme assembly suggests that the ability to favourably interact with F205 may distinguish activators from inhibitors. The cryo-EM structure of human β-ureidopropionase assembly obtained at low pH provides first insights into the architecture of its activated state. and validates our current model of the allosteric regulation mechanism. Closed entrance loop conformations and dimer-dimer interfaces are highly conserved between human and fruit fly enzymes.
  •  
7.
  • Encarnacao, Joao Crispim, Master, 1990-, et al. (författare)
  • A real-time cell-binding assay reveals dynamic features of STxB-Gb3 cointernalization and STxB-mediated cargo delivery into cancer cells
  • 2020
  • Ingår i: FEBS Letters. - : WILEY. - 0014-5793 .- 1873-3468. ; 594:15, s. 2406-2420
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between the Shiga toxin B-subunit (STxB) and its globotriaosylceramide receptor (Gb3) has a high potential for being exploited for targeted cancer therapy. The primary goal of this study was to evaluate the capacity of STxB to carry small molecules and proteins as cargo into cells. For this purpose, an assay was designed to provide real-time information about the StxB-Gb3 interaction as well as the dynamics and mechanism of the internalization process. The assay revealed the ability to distinguish the process of binding to the cell surface from internalization and presented the importance of receptor and STxB clustering for internalization. The overall setup demonstrated that the binding mechanism is complex, and the concept of affinity is difficult to apply. Hence, time-resolved methods, providing detailed information about the interaction of STxB with cells, are critical for the optimization of intracellular delivery.
  •  
8.
  • Fabini, Edoardo, et al. (författare)
  • Unveiling the Biochemistry of the Epigenetic Regulator SMYD3
  • 2019
  • Ingår i: Biochemistry. - : AMER CHEMICAL SOC. - 0006-2960 .- 1520-4995. ; 58:35, s. 3634-3645
  • Tidskriftsartikel (refereegranskat)abstract
    • SET and MYND domain-containing protein 3 (SMYD3) is a lysine methyltransferase that plays a central role in a variety of cancer diseases, exerting its pro-oncogenic activity by methylation of key proteins, of both nuclear and cytoplasmic nature. However, the role of SMYD3 in the initiation and progression of cancer is not yet fully understood and further biochemical characterization is required to support the discovery of therapeutics targeting this enzyme. We have therefore developed robust protocols for production, handling, and crystallization of SMYD3 and biophysical and biochemical assays for clarification of SMYD3 biochemistry and identification of useful lead compounds. Specifically, a time-resolved biosensor assay was developed for kinetic characterization of SMYD3 interactions. Functional differences in SMYD3 interactions with its natural small molecule ligands SAM and SAH were revealed, with SAM forming a very stable complex. A variety of peptides mimicking putative substrates of SMYD3 were explored in order to expose structural features important for recognition. The interaction between SMYD3 and some peptides was influenced by SAM. A nonradioactive SMYD3 activity assay using liquid chromatography-mass spectrometry (LC-MS) analysis explored substrate features of importance also for methylation. Methylation was notable only toward MAP kinase kinase kinase 2 (MAP3K2_K-260)-mimicking peptides, although binary and tertiary complexes were detected also with other peptides. The analysis supported a random bi-bi mechanistic model for SMYD3 methyltransferase catalysis. Our work unveiled complexities in SMYD3 biochemistry and resulted in procedures suitable for further studies and identification of novel starting points for design of effective and specific leads for this potential oncology target.
  •  
9.
  • Fekry, Mostafa, et al. (författare)
  • Production of stable and pure ZC3H11A-An extensively disordered RNA binding protein
  • 2024
  • Ingår i: Protein Expression and Purification. - : Elsevier. - 1046-5928 .- 1096-0279. ; 222
  • Tidskriftsartikel (refereegranskat)abstract
    • Human ZC3H11A is an RNA-binding zinc finger protein involved in mRNA export and required for the efficient growth of human nuclear replicating viruses. Its biochemical properties are largely unknown so our goal has been to produce the protein in a pure and stable form suitable for its characterization. This has been challenging since the protein is large (810 amino acids) and with only the N-terminal zinc finger domain (amino acids 1-86) being well structured, the remainder is intrinsically disordered. Our production strategies have encompassed recombinant expression of full-length, truncated and mutated ZC3H11A variants with varying purification tags and fusion proteins in several expression systems, with or without co-expression of chaperones and putative interaction partners. A range of purification schemes have been explored. Initially, only truncated ZC3H11A encompassing the zinc finger domain could successfully be produced in a stable form. It required recombinant expression in insect cells since expression in E. coli gave a protein that aggregated. To reduce problematic nucleic acid contaminations, Cys8, located in one of the zinc fingers, was substituted by Ala and Ser. Interestingly, this did not affect nucleic acid binding, but the full-length protein was stabilised while the truncated version was insoluble. Ultimately, we discovered that when using alkaline buffers (pH 9) for purification, full-length ZC3H11A expressed in Sf9 insect cells was obtained in a stable and >90 % pure form, and as a mixture of monomers, dimers, tetramers and hexamers. Many of the challenges experienced are consistent with its predicted structure and unusual charge distribution.
  •  
10.
  • Fekry, Mostafa, et al. (författare)
  • The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase
  • 2023
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active "core domain" of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a "gatekeeper" residue. Our findings raise questions concerning the evolutionary origin of vsTyr.
  •  
11.
  • FitzGerald, Edward A., et al. (författare)
  • Discovery of fragments inducing conformational effects in dynamic proteins using a second-harmonic generation biosensor
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 11:13, s. 7527-7537
  • Tidskriftsartikel (refereegranskat)abstract
    • Biophysical screening of compound libraries for the identification of ligands that interact with a protein is efficient, but does typically not reveal if (or how) ligands may interfere with its functional properties. For this a biochemical/functional assay is required. But for proteins whose function is dependent on a conformational change, such assays are typically complex or have low throughput. Here we have explored a high-throughput second-harmonic generation (SHG) biosensor to detect fragments that induce conformational changes upon binding to a protein in real time and identify dynamic regions. Multiwell plate format SHG assays were developed for wild-type and six engineered single-cysteine mutants of acetyl choline binding protein (AChBP), a homologue to ligand gated ion channels (LGICs). They were conjugated with second harmonic-active labels via amine or maleimide coupling. To validate the assay, it was confirmed that the conformational changes induced in AChBP by nicotinic acetyl choline receptor (nAChR) agonists and antagonists were qualitatively different. A 1056 fragment library was subsequently screened against all variants and conformational modulators of AChBP were successfully identified, with hit rates from 9–22%, depending on the AChBP variant. A subset of four hits was selected for orthogonal validation and structural analysis. A time-resolved grating-coupled interferometry-based biosensor assay confirmed the interaction to be a reversible 1-step 1 : 1 interaction, and provided estimates of affinities and interaction kinetic rate constants (KD = 0.28–63 μM, ka = 0.1–6 μM−1 s−1, kd = 1 s−1). X-ray crystallography of two of the fragments confirmed their binding at a previously described conformationally dynamic site, corresponding to the regulatory site of LGICs. These results reveal that SHG has the sensitivity to identify fragments that induce conformational changes in a protein. A selection of fragment hits with a response profile different to known LGIC regulators was characterized and confirmed to bind to dynamic regions of the protein.
  •  
12.
  • FitzGerald, Edward, et al. (författare)
  • Multiplexed experimental strategies for fragment library screening against challenging drug targets using SPR biosensors
  • 2024
  • Ingår i: SLAS Discovery. - : Elsevier. - 2472-5560 .- 2472-5552. ; :1, s. 40-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery.  However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B  (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau  (tau K18M). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.
  •  
13.
  • Huang, Hsin-Ho, et al. (författare)
  • Analysis of the leakage of gene repression by an artificial TetR-regulated promoter in cyanobacteria
  • 2015
  • Ingår i: BMC Research Notes. - : Springer Science and Business Media LLC. - 1756-0500. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: There is a need for strong and tightly regulated promoters to construct more reliable and predictable genetic modules for synthetic biology and metabolic engineering. For this reason we have previously constructed a TetR regulated L promoter library for the cyanobacterium Synechocystis PCC 6803. In addition to the L03 promoter showing wide dynamic range of transcriptional regulation, we observed the L09 promoter as unique in high leaky gene expression under repressed conditions. In the present study, we attempted to identify the cause of L09 promoter leakage. TetR binding to the promoter was studied by theoretical simulations of DNA breathing dynamics and by surface plasmon resonance (SPR) biosensor technology to analyze the kinetics of the DNA-protein interactions.RESULTS: DNA breathing dynamics of a promoter was computed with the extended nonlinear Peyrard-Bishop-Dauxois mesoscopic model to yield a DNA opening probability profile at a single nucleotide resolution. The L09 promoter was compared to the L10, L11, and L12 promoters that were point-mutated and different in repressed promoter strength. The difference between DNA opening probability profiles is trivial on the TetR binding site. Furthermore, the kinetic rate constants of TetR binding, as measured by SPR biosensor technology, to the respective promoters are practically identical. This suggests that a trivial difference in probability as low as 1 × 10(-4) cannot lead to detectable variations in the DNA-protein interactions. Higher probability at the downstream region of transcription start site of the L09 promoter compared to the L10, L11, and L12 promoters was observed. Having practically the same kinetics of binding to TetR, the leakage problem of the L09 promoter might be due to enhanced RNA Polymerase (RNAP)-promoter interactions in the downstream region.CONCLUSIONS: Both theoretical and experimental analyses of the L09 promoter's leakage problem exclude a mechanism of reduced TetR binding but instead suggest enhanced RNAP binding. These results assist in creating more tightly regulated promoters for realizing synthetic biology and metabolic engineering in biotechnological applications.
  •  
14.
  •  
15.
  • Linkuviene, Vaida, et al. (författare)
  • Introduction of Intrinsic Kinetics of Protein-Ligand Interactions and Their Implications for Drug Design
  • 2018
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 61:6, s. 2292-2302
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure kinetic relationship analyses and identification of dominating interactions for optimization of lead compounds should ideally be based on intrinsic rate constants instead of the more easily accessible observed kinetic constants, which also account for binding linked reactions. The intrinsic rate constants for sulfonamide inhibitors and pharmacologically relevant isoforms of carbonic anhydrase were determined by a novel surface plasmon resonance (SPR) biosensor-based approach, using chemodynamic analysis of binding-linked pH-dependent effects. The observed association rates (k(a)(obs)) were pH-dependent and correlated with the fraction of deprotonated inhibitor and protonated zinc-bound water molecule. The intrinsic association rate constants (k(a)(intr)) were pH independent and higher than k(a)(obs). By contrast, the observed and intrinsic dissociation rate constants were identical and pH-independent, demonstrating that the observed association and dissociation mechanisms are inherently different. A model accounting for the differences between intrinsic and observed rate constants was developed, useful also for other interactions with binding-linked protonation reactions.
  •  
16.
  • Luttens, Andreas, et al. (författare)
  • Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:7, s. 2905-2920
  • Tidskriftsartikel (refereegranskat)abstract
    • Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.
  •  
17.
  • Nosrati, Masoumeh, et al. (författare)
  • Insights from engineering the Affibody-Fc interaction with a computational-experimental method
  • 2017
  • Ingår i: Protein Engineering Design & Selection. - : Oxford University Press. - 1741-0126 .- 1741-0134. ; 30:9, s. 593-601
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between the Staphylococcal Protein A (SpA) domain B (the basis of the Affibody) molecule and the Fc of IgG is key to the use of Affibodies in affinity chromatography and in potential therapies against certain inflammatory diseases. Despite its importance and four-decade history, to our knowledge this interaction has never been affinity matured. We elucidate reasons why single-substitutions in the SpA which improve affinity to Fc may be very rare, and also discover substitutions which potentially serve several engineering purposes. We used a variation of FoldX to predict changes in protein-protein-binding affinity, and produce a list of 41 single-amino acid substitutions on the SpA molecule, of which four are near wild type (wt) and five are at most a factor of four from wt affinity. The nine substitutions include one which removes lysine, and several others which change charge. Subtle modulations in affinity may be useful for modifying column elution conditions. The method is applicable to other protein-protein systems, providing molecular insights with lower workload than existing experimental techniques.
  •  
18.
  • Pandya, Nikhil J, et al. (författare)
  • Noelin1 Affects Lateral Mobility of Synaptic AMPA Receptors
  • 2018
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 24:5, s. 1218-1230
  • Tidskriftsartikel (refereegranskat)abstract
    • Lateral diffusion on the neuronal plasma membrane of the AMPA-type glutamate receptor (AMPAR) serves an important role in synaptic plasticity. We investigated the role of the secreted glycoprotein Noelin1 (Olfactomedin-1 or Pancortin) in AMPAR lateral mobility and its dependence on the extracellular matrix (ECM). We found that Noelin1 interacts with the AMPAR with high affinity, however, without affecting rise- and decay time and desensitization properties. Noelin1 co-localizes with synaptic and extra-synaptic AMPARs and is expressed at synapses in an activity-dependent manner. Single-particle tracking shows that Noelin1 reduces lateral mobility of both synaptic and extra-synaptic GluA1-containing receptors and affects short-term plasticity. While the ECM does not constrain the synaptic pool of AMPARs and acts only extrasynaptically, Noelin1 contributes to synaptic potentiation by limiting AMPAR mobility at synaptic sites. This is the first evidence for the role of a secreted AMPAR-interacting protein on mobility of GluA1-containing receptors and synaptic plasticity.
  •  
19.
  • Parenti, Marco Daniele, et al. (författare)
  • Discovery of the 4-aminopiperidine-based compound EM127 for the site-specific covalent inhibition of SMYD3
  • 2022
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier. - 0223-5234 .- 1768-3254. ; 243
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent findings support the hypothesis that inhibition of SMYD3 methyltransferase may be a therapeutic avenue for some of the deadliest cancer types. Herein, active site-selective covalent SMYD3 inhibitors were designed by introducing an appropriate reactive cysteine trap into reversible first-generation SMYD3 inhibitors. The 4-amino-piperidine derivative EM127 (11C) bearing a 2-chloroethanoyl group as reactive warhead showed selectivity for Cys186, located in the substrate/histone binding pocket. Selectivity towards Cys186 was retained even at high inhibitor/enzyme ratio, as shown by mass spectrometry. The mode of interaction with the SMYD3 substrate/ histone binding pocket was revealed by crystallographic studies. In enzymatic assays, 11C showed a stronger SMYD3 inhibitory effect compared to the reference inhibitor EPZ031686. Remarkably, 11C attenuated the proliferation of MDA-MB-231 breast cancer cell line at the same low micromolar range of concentrations that reduced SMYD3 mediated ERK signaling in HCT116 colorectal cancer and MDA-MB-231 breast cancer cells. Furthermore, 11C (5 mu M) strongly decreased the steady-state mRNA levels of genes important for tumor biology such as cyclin dependent kinase 2, c-MET, N-cadherin and fibronectin 1, all known to be regulated, at least in part, by SMYD3. Thus, 11C is as a first example of second generation SMYD3 inhibitors; this agent represents a covalent and a site specific SMYD3 binder capable of potent and prolonged attenuation of methyltransferase activity.
  •  
20.
  • Rajkovic, Andrei, et al. (författare)
  • Amino acid substitutions in human growth hormone affect secondary structure and receptor binding
  • 2023
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between human Growth Hormone (hGH) and hGH Receptor (hGHR) has basic relevance to cancer and growth disorders, and hGH is the scaffold for Pegvisomant, an anti-acromegaly therapeutic. For the latter reason, hGH has been extensively engineered by early workers to improve binding and other properties. We are particularly interested in E174 which belongs to the hGH zinc-binding triad; the substitution E174A is known to significantly increase binding, but to now no explanation has been offered. We generated this and several computationally-selected single-residue substitutions at the hGHR-binding site of hGH. We find that, while many successfully slow down dissociation of the hGH-hGHR complex once bound, they also slow down the association of hGH to hGHR. The E174A substitution induces a change in the Circular Dichroism spectrum that suggests the appearance of coiled-coiling. Here we show that E174A increases affinity of hGH against hGHR because the off-rate is slowed down more than the on-rate. For E174Y (and certain mutations at other sites) the slowdown in on-rate was greater than that of the off-rate, leading to decreased affinity. The results point to a link between structure, zinc binding, and hGHR-binding affinity in hGH.
  •  
21.
  • Seeger, Christian, 1982-, et al. (författare)
  • Biophysical analysis of the dynamics of calmodulin interactions with neurogranin and Ca2+/calmodulin-dependent kinase II
  • 2017
  • Ingår i: Journal of Molecular Recognition. - : Wiley. - 0952-3499 .- 1099-1352. ; 30, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Calmodulin (CaM) functions depend on interactions with CaM-binding proteins, regulated by Ca2+. Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM-binding region of Ca2+/calmodulin-dependent kinase II (CaMKII290-309) have been studied using biophysical methods. These proteins have opposite Ca2+ dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that Ca2+ and CaM interact very rapidly, and with moderate affinity (KDSPR=3M). Calmodulin-CaMKII290-309 interactions were only detected in the presence of Ca2+, exhibiting fast kinetics and nanomolar affinity (KDSPR7.1nM). The CaM-Ng interaction had higher affinity under Ca2+-depleted (KDSPR480nM,3.4x105M-1s-1 and k(-1) = 1.6 x 10(-1)s(-1)) than Ca2+-saturated conditions (KDSPR19M). The IQ motif of Ng (Ng(27-50)) had similar affinity for CaM as Ng under Ca2+-saturated conditions (KDSPR=14M), but no interaction was seen under Ca2+-depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng (KDMST890nM) and CaMKII290-309(KDMST190nM) interactions. Although CaMKII290-309 showed expected interaction characteristics, they may be different for full-length CaMKII. The data for full-length Ng, but not Ng(27-50), agree with the current model on Ng regulation of Ca2+/CaM signaling.
  •  
22.
  • Solbak, Sara M.Ø., et al. (författare)
  • Characterization of interactions between hepatitis C virus NS5B polymerase, annexin A2 and RNA - effects on NS5B catalysis and allosteric inhibition
  • 2017
  • Ingår i: Virology Journal. - : Springer Science and Business Media LLC. - 1743-422X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Direct acting antivirals (DAAs) provide efficient hepatitis C virus (HCV) therapy and clearance for a majority of patients, but are not available or effective for all patients. They risk developing HCV-induced hepatocellular carcinoma (HCC), for which the mechanism remains obscure and therapy is missing. Annexin A2 (AnxA2) has been reported to co-precipitate with the non-structural (NS) HCV proteins NS5B and NS3/NS4A, indicating a role in HCC tumorigenesis and effect on DAA therapy.Methods: Surface plasmon resonance biosensor technology was used to characterize direct interactions between AnxA2 and HCV NS5B, NS3/NS4 and RNA, and the subsequent effects on catalysis and inhibition.Results: No direct interaction between AnxA2 and NS3/NS4A was detected, while AnxA2 formed a slowly dissociating, high affinity (K D = 30 nM), complex with NS5B, decreasing its catalytic activity and affinity for the allosteric inhibitor filibuvir. The RNA binding of the two proteins was independent and AnxA2 and NS5B interacted with different RNAs in ternary complexes of AnxA2:NS5B:RNA, indicating specific preferences.Conclusions: The complex interplay revealed between NS5B, AnxA2, RNA and filibuvir, suggests that AnxA2 may have an important role for the progression and treatment of HCV infections and the development of HCC, which should be considered also when designing new allosteric inhibitors.
  •  
23.
  • Talibov, Vladimir O, 1991-, et al. (författare)
  • Discovery of an allosteric ligand binding site in SMYD3 lysine methyltransferase
  • 2021
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227 .- 1439-7633. ; 22:9, s. 1597-1608
  • Tidskriftsartikel (refereegranskat)abstract
    • SMYD3 is a multifunctional epigenetic enzyme with lysine methyl transferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened using a biosensor-based competition assay. Diperodon was identified as an allosteric ligand. The ( R )-and ( S )-enantiomers of the racemic drug were isolated and their affinities determined ( K D > = 42 and 84 ÎŒM). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although HSP90-SMYD3 binding was confirmed ( K D = 13 ÎŒM). The allosteric site appears to be druggable and suitable for exploration of non-catalytic SMYD3 functions and therapeutics with new mechanisms of action.
  •  
24.
  • Talibov, Vladimir O, 1991- (författare)
  • Interaction kinetic analysis in drug design, enzymology and protein research
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented here is focused on the phenomenon of molecular recognition – the mutual ability of biological molecules to recognize each other through their chemical signatures. Here, the kinetic aspects of recognition were evaluated, as interaction kinetics reveal valuable dimensions in the description of molecular events in biological systems. The primary objects studied in this thesis were human proteins and their interaction partners. Proteins serve a fundamental role in living organisms, supporting the biochemical machinery by means of catalysis, signalling and transport; additionally, proteins are the main targets for drugs.In the first study, carbonic anhydrase (CA) isozymes were employed as a model system to address the problem of drug selectivity. Kinetic signatures preferable for the design of selective sulphonamide-based inhibitors were identified. In a follow up study, the recognition between CA and sulphonamides was separated into two parts, uncovering intrinsic recognition features that genuinely reflect the interaction mechanism. For the first time, the concept of intrinsic interaction kinetics was applied to a drug-target system.Another model protein studied in this thesis was calmodulin (CaM), as its interactions with other proteins should have specific kinetic signatures to support the dynamics of calcium-dependent signalling. The study evolved around calcium-dependent CaM interactions with the neuronal protein neurogranin (Ng), and revealed its complex nature. Ng was found to interact with CaM both in presence and absence of calcium, but with different kinetics and affinity. This finding supports development of a mechanistic model of calcium sensitivity regulation.The last two projects were more applied, exploring the druggability of an emerging class of pharmaceutical targets – epigenetic enzymes. Expertise and methodology for biophysically guided drug discovery towards histone demethylase LSD1 and histone methyltransferase SMYD3 were developed. For LSD1, the project assisted the rational design of active site-targeting macrocyclic peptides, and resulted in the development of competitive inhibitors with a well described mechanism of action. A novel biophysical platform for screening was developed for SMYD3. It proved to be successful, as it identified previously unknown allosteric ligand binding site. Both projects were supported by structural studies, expanding the druggable space of epigenetic targets.
  •  
25.
  • Xu, Xingxing, et al. (författare)
  • Estimating Detection Limits of Potentiometric DNA sensors Using Surface Plasmon Resonance Analyses
  • 2020
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 5:1, s. 217-224
  • Tidskriftsartikel (refereegranskat)abstract
    • As the signals of potentiometric-based DNA ion-selective field effect transistor (ISFET) sensors differ largely from report to report, a systematic revisit to this method is needed. Herein, the hybridization of the target and the probe DNA on the sensor surface and its dependence on the surface probe DNA coverage and the ionic strength were systematically investigated by surface plasmon resonance (SPR). The maximum potentiometric DNA hybridization signal that could be registered by an ISFET sensor was estimated based on the SPR measurements, without considering buffering effects from any side interaction on the sensing electrode. We found that under physiological solutions (200 to 300 mM ionic strength), the ISFET sensor could not register the DNA hybridization events on the sensor surface due to Debye screening. Lowering the salt concentration to enlarge the Debye length would at the same time reduce the surface hybridization efficiency, thus suppressing the signal. This adverse effect of low salt concentration on the hybridization efficiency was also found to be more significant on the surface with higher probe coverage due to steric hindrance. With the method of diluting buffer, the maximum potentiometric signal generated by the DNA hybridization was estimated to be only around 120 mV with the lowest detection limit of 30 nM, occurring on a surface with optimized probe coverage and in the tris buffer with 10 mM NaCl. An alternative method would be to achieve high-efficiency hybridization in the buffer with high salt concentration (1 M NaCl) and then to perform potentiometric measurements in the buffer with low salt concentration (1 mM NaCl). Based on the characterization of the stability of the hybridized DNA duplexes on the sensor surface in low salt concentration buffer solutions, the estimated maximum potentiometric signal could be significantly higher using the alternative method. The lowest detection limit for this alternative method was estimated to be around 0.6 nM. This work can serve as an important quantitative reference for potentiometric DNA sensors.
  •  
26.
  • Xu, Xingxing, et al. (författare)
  • Structural Changes of Mercaptohexanol Self-assembled Monolayers on Gold and their Influence on Impedimetric Aptamer Sensors
  • 2019
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 91:22, s. 14697-14704
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite a large number of publications describing biosensors based on electrochemical impedance spectroscopy (EIS), little attention has been paid to the stability and reproducibility issues of the sensor interfaces. In this work, the stability and reproducibility of faradaic EIS analyses on the aptamer/mercaptohexanol (MCH) self-assembled monolayer (SAM) functionalized gold surfaces in ferri- and ferrocyanide solution were systematically evaluated prior to and after the aptamer-probe DNA hybridization. It is shown that the EIS data exhibited significant drift, and this significantly affected the reproducibility of the EIS signal of the hybridization. As a result, no significant difference between the charge transfer resistance (RCT) changes induced by the aptamer-target DNA hybridization and that caused by the drift could be identified. A conditioning of the electrode in the measurement solution for more than 12 hours was required to reach a stable RCT baseline prior to the aptamer-probe DNA hybridization. The monitored drift in RCT and CDL during the conditioning suggests that the MCH SAM on the gold surface reorganized to a thinner but more closely packed layer. We also observed that the hot binding buffer used in the following aptamer-probe DNA hybridization process could induce additional MCH and aptamer reorganization thus further drift in RCT. As a result, the RCT change caused by the aptamer-probe DNA hybridization was less than that caused by the hot binding buffer (blank control experiment). Therefore, it is suggested that the use of high temperature in the EIS measurement should be carefully evaluated or avoided. This work provides practical guidelines for the EIS measurements. Moreover, since SAM functionalized gold electrodes are widely used in biosensors, e.g., DNA sensors, an improved understanding of the origin of the observed drift is very important for the development of well-functioning and reproducible biosensors.
  •  
27.
  • Yang, Jie, et al. (författare)
  • Macrocyclic Peptides Uncover a Novel Binding Mode for Reversible Inhibitors of LSD1
  • 2020
  • Ingår i: ACS Omega. - : AMER CHEMICAL SOC. - 2470-1343. ; 5:8, s. 3979-3995
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme which regulates the methylation of Lys4 of histone 3 (H3) and is overexpressed in certain cancers. We used structures of H3 substrate analogues bound to LSD1 to design macrocyclic peptide inhibitors of LSD1. A linear, Lys4 to Met-substituted, 11-mer (4) was identified as the shortest peptide distinctly interacting with LSD1. It was evolved into macrocycle 31, which was >40 fold more potent K-i = 2.3 mu M) than 4. Linear and macrocyclic peptides exhibited unexpected differences in structure-activity relationships for interactions with LSD1, indicating that they bind LSD1 differently. This was confirmed by the crystal structure of 31 in complex with LSD1-CoREST1, which revealed a novel binding mode at the outer rim of the LSD1 active site and without a direct interaction with FAD. NMR spectroscopy of 31 suggests that macrocyclization restricts its solution ensemble to conformations that include the one in the crystalline complex. Our results provide a solid basis for the design of optimized reversible LSD1 inhibitors.
  •  
28.
  • Öhman Fuchs, Peder, 1984-, et al. (författare)
  • Fibrin fragment E potentiates TGF-beta-induced myofibroblast activation and recruitment
  • 2020
  • Ingår i: Cellular Signalling. - : Elsevier. - 0898-6568 .- 1873-3913. ; 72
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrin is an essential constituent of the coagulation cascade, and the formation of hemostatic fibrin clots is central to wound healing. Fibrin clots are over time degraded into fibrin degradation products as the injured tissue is replaced by granulation tissue. Our goal was to study the role of the fibrin degradation product fragment E (FnE) in fibroblast activation and migration. We present evidence that FnE is a chemoattractant for fibroblasts and that FnE can potentiate TGF-beta-induced myofibroblast formation. FnE forms a stable complex with alpha(v)beta(3) integrin, and the integrin beta(3) subunit is required both for FnE-induced fibroblast migration and for potentiation of TGF-beta-induced myofibroblast formation. Finally, subcutaneous infusion of FnE in mice results in a fibrotic response in the hypodermis. These results support a model where FnE released from clots in wounded tissue promote wound healing and fibrosis by both recruitment and activation of fibroblasts. Fibrin fragment E could thus represent a therapeutic target for treatment of pathological fibrosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28
Typ av publikation
tidskriftsartikel (26)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Danielson, U. Helena ... (28)
Abdurakhmanov, Eldar ... (9)
Dobritzsch, Doreen, ... (6)
Landegren, Ulf (3)
Johansson, Lars (2)
Kihlberg, Jan (2)
visa fler...
Landegren, Nils, 198 ... (2)
Abramsson, Mia (2)
Kamali-Moghaddam, Ma ... (2)
Fekry, Mostafa (2)
Artursson, Per (2)
Löf, Liza (2)
Blokzijl, Andries (2)
Svensson, Richard (2)
Lönn, Peter (2)
Lundbäck, Thomas (2)
Nyholm, Leif, 1961- (2)
Stenberg, Gun (1)
Solbak, Sara (1)
Howard, Rebecca (1)
Yang, Jie (1)
Lundkvist, Åke (1)
Lindblad, Peter (1)
Lohkamp, Bernhard (1)
Barril, Xavier (1)
Kreuger, Johan, 1972 ... (1)
Brandt, Peter (1)
Lindgren, Maria T. (1)
Alogheli, Hiba (1)
Akaberi, Dario (1)
Lennerstrand, Johan (1)
Sandström, Anja, 197 ... (1)
Krambrich, Janina (1)
Gullberg, Hjalmar (1)
Sandberg, Kristian (1)
Holmgren, Claes (1)
Al-Amin, Rasel A., R ... (1)
Arngården, Linda, 19 ... (1)
Hammond, Maria, 1984 ... (1)
Haybaeck, Johannes (1)
Jenmalm Jensen, Anni ... (1)
Muthelo, Phathutshed ... (1)
Al-Amin, Rasel Abdul ... (1)
Vincke, Cecile (1)
Muyldermans, Serge (1)
Al-Amin, Rasel A., 1 ... (1)
Söderberg, Ola, 1966 ... (1)
Hamilton, David J. (1)
Löfblom, John (1)
Carlsson, Jens (1)
visa färre...
Lärosäte
Uppsala universitet (28)
Karolinska Institutet (4)
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Örebro universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Medicin och hälsovetenskap (8)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy